
Сенсорные кнопки устроенны так, что они реагируют на изменение емкости. Изначально кнопка имеет определенную емкость, которая разная у каждой модели данных датчиков.

Так как тело человека обладает некоторой емкостью и небольшим реактивным сопротивлением. Если прикоснуться пальцем какого-нибудь проводника, то по нему потечет ток утечки. В сенсорных кнопка установлен чип (в нашем случае TTP223), который определяет данную утечку. При достижении определенного значения происходит срабатывания.


СЕНСОР TTP 223 С АЛИЭКСПРЕСС ПОЛНЫЙ ОБЗОР )))
Технические характеристики TTP223
- Напряжение питания постоянного тока, В: 2 – 5.5
- Потребляемый ток (в покое, при VCC= 3 В), мкА: 70
- Максимальное время срабатывания (при VCC= 3 В), мС: 220
- Габаритный размер платы, мм: 11×15
Подключим сенсорную кнопку TTP223 в Arduino

Как подключить кнопку к Arduino я рассказывал в Урок1 — Подключение кнопки и светодиода кплате Arduino
Для подключения сенсорной кнопки не нужно дополнительно ставить резистор потягивающий резистор. Все еже реализовано в самой кнопке. И контакт не будет висеть в воздухе.
Проверим будет или нет работать код из урока подключения кнопки к Arduino.
int led_pin=3; // пин подключения int button_pin = 4; // пин кнопки void setup() < pinMode(led_pin, OUTPUT); // Инициализируем цифровой вход/выход в режиме выхода. pinMode(button_pin, INPUT); // Инициализируем цифровой вход/выход в режиме входа. >void loop() < if (digitalRead(button_pin) == HIGH) < // Если кнопка нажата digitalWrite(led_pin, HIGH);// зажигаем светодиод >else < //Иначе digitalWrite(led_pin, LOW);// выключаем светодиод >>
Как видим у нас все работает аналогично обычной кнопке.
При этом есть еще один бонус от использования сенсорной кнопки. Нам не нужно устранять дребезг кнопки. Если вы не знаете что это смотрите : Урок2. Нажатие кнопки без ложных срабатываний.Устраняем дребезг кнопки
Также данную сенсорную кнопку можно сконфигурирован для работы в одном из 4 режимов для этого нужно спаять перемычки А и В на плате:
A
B
Режимы
На время касания на выходе “1”
На время касания на выходе “0”
режим триггера, состояние выхода после касания – “0”
TTP223 сенсорная кнопка – сенсорный модуль ключ: подключение
режим триггера, состояние выхода после касания – “1”

Как мы видим если спаять перемычки А и В. Мы сконфигурирован сенсорную кнопку как логический ключ. И не меняя программу мы можем включать светодиод и выключать при нажатии на сенсорную кнопку TTP223 .
Давайте подключим реле, вместо светодиода, не меняя программу.

Как видим, реле также отлично работает включается и выключается.
Если мы можем сконфигурировать кнопку так, что она будет работать как триггер. При нажатии подать положительный сигнал на выход. Для управления простыми устройствами такими как светодиод и реле. Из схемы можно убрать Arduino.

Для подачи напряжения буду использовать MICRO USB адаптер 5pin
Подключим светодиод к сенсорной кнопку . Как видим все работает.

Если же подключить реле к сенсорной кнопке TTP223 .

Оно не работает, потому, что кнопку можно подключить как логический ключ. Электродвигателя, реле и пр. (даже на 3-5 В) работать не будут. Сенсорная кнопка просто сгорит. Для примера я подключал параллельно 3 светодиода. И как видно из эксперимента начинаются ложные срабатывания.
По техническим характеристикам даже 4 светодиода для данной кнопки много.
Но не обязательно ограничиваться реле. Можно подключать MOSSFET или твердотельное реле.
Проверку на работоспособность с разными материалами: пластик, картон, фанерой. Если на сенсорную кнопку положить материал не толще 2 мм. Кнопка работает отлично. Более 2 мм. Работает только с пластиком. Но это у меня. Возможно у вас будут другие результаты.
Как у вас работают сенсорные кнопки пишите в комментарии.
Вывод: Сенсорная кнопка TTP223 имеет ряд преимуществ при использовании в проектах на Arduino , по сравнению с тактовой кнопкой. Но она не может быть использована в силовых цепях.
Подписывайтесь на мой канал на Youtube и вступайте в группы в
Вконтакте и Facebook.
Понравилась статья? Поделитесь ею с друзьями:
Источник: portal-pk.ru
Управление светом в доме с помощью сенсорного датчика и Arduino
Для управления различными устройствами в настоящее время придумано достаточно много разнообразных кнопок, переключателей и датчиков. Одним из подобных устройств является сенсорный датчик, который еще называют датчиком касания – от англ. Touch Sensor. Сенсорные датчики значительно упрощают ввод информации и легко подключаются к различным микроконтроллерам.
Сейчас наиболее распространены емкостные сенсорные датчики – его подключение к плате Arduino мы и рассмотрим в данном проекте. С его помощью мы будем включать и выключать свет в комнате.

Сенсорный датчик (датчик касания) TTP223
Сенсорный датчик, который мы будем рассматривать в данном проекте, состоит из модуля емкостного сенсорного датчика и драйвера датчика на основе микросхемы TTP223. Рабочее напряжение для микросхемы TTP223 составляет от 2 до 5,5 В. Потребление тока у этой микросхемы очень низкое. Благодаря относительно дешевой цене, низкому энергопотреблению и легкости интеграции в различную встраиваемую электронику сенсорные датчики TTP223 получили в настоящее время достаточно широкое распространение.
Внешний датчика TTP223 показан на следующем рисунке.

Как видно из представленного рисунка, распиновка датчика достаточно проста. На одной стороне платы датчика расположена сенсорная область размером 11 мм на 10,5 мм с диапазоном срабатывания около 5 мм. На другой стороне платы датчика установлена микросхема TTP223, светодиод, резисторы и конденсатор.
При подключении датчика TTP223 к питанию по умолчанию на выходе OUT устанавливается напряжение низкого уровня (LOW). Если прикоснуться пальцем к рабочей области датчика, то выход OUT переключается с низкого уровня на высокий и загорается встроенный светодиод датчика. При необходимости настройки датчика можно использовать перемычки А и В, а так же перемычку без подписи (по умолчанию перемычки не установлены).

Назначение перемычек А и В:
► А – 0 / В – 0 – без фиксации состояния, при касании на выходе «1»
► A – 1 / B – 0 – без фиксации состояния, при касании на выходе «0»
► A – 0 / B – 1 – с фиксацией состояния (триггер), при касании на выходе «1»
► A – 1 / B – 1 – с фиксацией состояния (триггер), при касании на выходе «0»
То есть, перемычка А устанавливает логическое состояние на выходе «1» или «0» при нажатии, а перемычкой В включаем триггер и чтобы переключить состояние, необходимо повторно коснуться датчика.
Настройка чувствительности осуществляется с помощью добавления конденсатора от 0 до 50 пФ, где 0 пф соответствует максимальной чувствительности, а 50 пф – самой низкой чувствительности.
Для более подробного изучения принципов работы датчика рекомендуем вам посмотреть даташит на датчик TTP 223.
Немного о принципах работы реле
В этом проекте мы будем управлять включением/выключением электрической лампочки с помощью сенсорного датчика, платы Arduino и реле. Принцип работы реле различного типа показан на следующем рисунке.

NO на этом рисунке обозначает нормально разомкнутые контакты, а NC – нормально замкнутые контакты. L1 и L2 – это выводы катушки реле. Когда на катушку реле не подано напряжения реле находится в выключенном состоянии – якорь (POLE) подключен к нормально замкнутому контакту. При подаче питания на катушку якорь реле подключается к нормально разомкнутому контакту.
Очень важно определить рабочие параметры реле перед тем как включать его в схему. Реле различаются, в частности, по рабочему напряжению, прикладываемому к катушке реле (контакты L1 и L2). Некоторые реле имеют рабочее напряжение 12 В, некоторые – 6 В, а некоторые – 5 В. Для нашего проекта мы использовали реле с управляющим (рабочим) напряжением 5 В с возможностью коммутации напряжения 250 В с током до 6 А.
Необходимые компоненты
- Плата Arduino Uno (купить на Aliexpress).
- USB кабель для программирования и питания.
- Сенсорный датчик (Touch Sensor) TTP223 (купить на Aliexpress).
- Транзистор BC549B (купить на Aliexpress).
- Диод 1N4007 (купить на Aliexpress).
- Резистор 2 кОм (купить на Aliexpress).
- Резистор 4,7 кОм (купить на Aliexpress).
- Реле с управляющим напряжением 5 В.
- Электрическая лампочка с держателем.
- Макетная плата.
- Соединительные провода.
Резистор 2 кОм, транзистор BC549B и диод 1N4007 можно заменить модулем реле.
Работа схемы
Схема управления светом в доме с помощью сенсорного датчика и платы Arduino представлена на следующем рисунке.

Транзистор используется для включения и выключения реле – он используется в связи с тем, что контакты платы Arduino не способны обеспечить ток, необходимый для срабатывания реле. Диод 1N4007 предназначен для блокировки (гашения) электромагнитных импульсов, возникающих при включении и выключении реле. Сенсорный датчик непосредственно подключен к плате Arduino.
Внешний вид собранной на макетной плате конструкции проекта показан на следующем рисунке.

А на следующем рисунке показана схема соединений проекта на макетной плате.

Объяснение программы для Arduino
Полный текст программы приведен в конце статьи, здесь же мы кратко рассмотрим его основные фрагменты.
Для начала в программе нам необходимо подключить используемые библиотеки.
Источник: microkontroller.ru
Обзор сенсорного датчика TTP223

Сегодня рассажу о недорогом и простом сенсорной кнопке на чип TTP223, так же приведу пример подключения с реле и платой Arduino.
Технические параметры
► Модуль собран на микросхеме TTP223B;
► Напряжение питания модуля: 2.5 – 5,5 В;
► Потребляемый ток при 5V (без светодиода): 11 мкА “холостой”, 15 мкА “нажат”
► Потребляемый ток при 3.3V (без светодиода): 7 мкА “холостой”, 9 мкА “нажат”
► Заявленный ток в режиме сна: 1.5-3 мкА
► Максимальный ток цифрового выхода: 8 мА
► Чувствительность: 0 – 50 пФ;
► Расстояние срабатывания: около 5 мм на воздухе, также работает через неметаллы (пластик, дерево, картон и т.д.)
► Режим работы по умолчанию: кнопка без фиксации, сигнал при нажатии 0 (HIGH)
► Время отклика (режим пониженного энергопотребления): 220 мс;
► Время отклика (активный режим): 60 мс;
Общие сведения
Емкостной сенсорный датчика основан на специализированной микросхеме TTP223. Рабочее напряжение микросхемы TTP223 составляет от 2 до 5,5 В, а потребление тока очень низок. Из-за дешевизны и легкой интеграции сенсорный датчик стал очень популярным, по сравнению с другими сенсорными датчиками.
На одной стороне платы, расположена сенсорная область размером 11 мм на 10,5 мм с диапазоном срабатывание около 5 мм. На другой стороне платы установлена микросхема TTP223, светодиод, резисторы и конденсор.

При подключении датчика TTP223 к питанию, по умолчанию выход OUT устанавливается в низкое состояние. Если прикоснутся пальцем рабочий области датчика, выход OUT переключается с низкого уровня на высокий и загорится встроенный светодиод. При необходимости, можно настроить модуль, для этого предусмотрены две перемычки А и В, а так же перемычка без подписи (по умолчанию перемычки не установлены).

Назначение перемычек А и В
► А — 0 / В — 0 — без фиксации состояния, при касании на выходе «1»
► A — 1 / B — 0 — без фиксации состояния, при касании на выходе «0»
► A — 0 / B — 1 — с фиксацией состояния (триггер), при касании на выходе «1»
► A — 1 / B — 1 — с фиксацией состояния (триггер), при касании на выходе «0»
То есть, перемычка А устанавливает логическое состояние на выходе «1» или «0» при нажатии, а перемычкой В включаем триггер и чтобы переключить состояние, необходимо повторно коснутся датчика.
Регулировка чувствительности.
Настройка чувствительности осуществляется с помощью добавления конденсатора от 0 до 50 пФ, где 0 пф максимальная чувствительность, а 50 пф самая низкая чувствительность.
Пример №1 — Управление TTP223 светодиодом.
Необходимые детали:
► Светодиод 5 мм x 1 шт.
► Резистор 270 Ом x 1 шт.
► Макетная плата 400 x 1 шт.
► Провода DuPont F-F, 20 см x 2 шт.
Описание:
В первом примере покажу как управлять светодиодом с помощью сенсорной кнопки TTP223 без установки перемычек.
Подключение.
Для удобства подключения, воспользуемся макетной платой на 400 контактов и DuPont проводами. Установим датчик TTP223 на макетную плату, подключим питание и к выходу OUT через резистор установим светодиод. В качестве питания использую лабораторный блок питания на 5 В, так же можно воспользоватся блоком питания от телефона. Схема подключения ниже.

Заключение:
Если все правильно собрали, когда прикоснетесь к датчику TTP223 светодиод загорится, при отпускании погаснет.

Пример №2 — Управление TTP223 нагрузкой (реле).
Необходимые детали:
► Модуль реле 2-х канальный x 1 шт.
► Резистор 270 Ом x 1 шт.
► Макетная плата 400 x 1 шт.
► Провода DuPont F-F, 20 см x 2 шт.
► Провода DuPont F-M, 20 см x 3 шт.
Описание:
Во втором примере немного усложним схему, вместо светодиода будем управлять модулем реле с помощью TTP223.
Подключение.
Так же как и в первом примере воспользуемся макетной платой на 400 контактов и DuPont проводами. Первым делом, необходимо активировать триггер, для этого установим перемычку на «В». Далее собираем все согласно схеме ниже.

Заключение:
При нажатии на сенсорную кнопку, реле включается, при повторном нажатии отключается. Как видите сенсорная кнопка TTP223 может управлять нагрузкой без микроконтроллера и с помощью такой простой схемы можно собрать сенсорную лампу. Так же, взамен реле, можно воспользоватся твердотельным реле или MOSFET.

Пример №3 — Подключение сенсорной кнопки TTP223 к Arduino.
Необходимые детали:
► Arduino UNO x 1 шт.
► Провода DuPont F-M, 20 см x 3 шт.
Описание:
И в последним примере, подключим сенсорную кнопку TTP223 к Arduino UNO и все показания передадим в «Последовательный порт«.
Подключение.
Подключаем вывод OUT от сенсорного датчика TTP223 к цифровому выводу 7 на Arduino, затем подключаем питание VCC и GND и загружаем скетч, схема подключения ниже.?

Программа:
Программа несложная, мы просто считываем показания с вывода A0 Arduino и отправляем их в «Последовательный порт»
Источник: robotchip.ru
