Речь пойдет о маленькой платке контроллера температуры для паяльников с жалом T12 ( и не только). На эту плату обзор на муське был ( еще обзор, еще сверхподробно как это работает). Плата называется «616 mini».
Сама идея и плата мне очень понравились. Нужно ткнуть раз десять паяльником в плату, припаять два внешних разъема и в результате получаем вполне работоспособную паяльную станцию. Да, без индикации, зато и без лишних забот о настройке через меню и калибровке. Чтобы было понятно и не было лишних вопросов, ну у меня есть Ksger какой-то с дисплеем. Работает.
Правда без косяков поначалу не обошлось. Хорошо, что быстро нашел поиском в сети про доработку вибродатчика (конденсатор на входной разъем от помех), а то так и сидел бы до сих пор без перехода в дежурный режим. Совершенства в мире нет. Но китайцы, судя по количеству версий печатной платы контроллера пытались достичь ( или достигнуть).
Контроллер влажности и температуры STC 3028 обзор настройка подключение
Еще были версии для встраивания в ручку паяльника
Детально разбираться что там от версии к версии менялось в схемах, видимо, смысла нет. Ниже на картинке схема какой-то ранней версии печатной платы. Она, в основном, соответствует купленной на Али плате терморегулятора «616» версии 5.8. По крайней мере использованные детальки почти совпадают. Для сравнения, ниже фотографии платы версии 5.8, которые прислали мне с Али.
Номиналы резисторов на схеме и печатной плате не сравнивал.
Короткое отступление про детальки.
Операционный усилитель сначала был традиционный LM358, но, видимо, кто-то в какой-то момент понял, что сравнивать милливольты непосредственно с термопары таким плохим компаратором не годится, поскольку никакой повторяемости свойств ( диапазона регулирования) у плат регулятора не получится. И операционник поменяли на прецизионный «3 Peak» TP1562A да еще и с полевиками, да еще и rail-to-rail по входу и выходу.
По описанию — очень даже неплохой операционник, минус в том, что на Али нашел только у одного продавца. И заметно дороже, чем LM358. Мощный полевой транзистор TPC8103 (TPC8107, TPC8109). Выпускается разными фирмами. Нашел в сети штуки три варианта даташитов. Полевик здесь по схеме используется с превышением максимально допустимого напряжения на затворе ( ± 20 В).
Терморегулятор, контроллер температуры W3230
Резистор 510 Ом в эмиттере маломощного транзистора ситуацию не спасает (и непонятно зачем вообще стоит в схеме). По-хорошему, нужно добавить в коллектор маломощного транзистора еще один резистор 10 кОм и затвор полевика подключить к делителю. Транзистор в SOT-23 — SS8050. Их, кстати, два с SMD маркировкой «Y1»(SS8050) и «J3Y»(S8050).
Обычный транзистор, но с максимально допустимым напряжением на коллекторе — 25 вольт. Зачем именно его тут поставили — не знаю, но нужно менять. Можно на BC847C. Транзистор MMBT5551 который стоял раньше в схеме годился с большим запасом по напряжению. SMD маркировка «T4» означает диод 1N4148.
В версиях 5.5. 5.8 появился защитный диод ( от неправильной полярности питания) перед стабилизатором 78L05. Нагреватель при перепутанной полярности включится на полную мощность через паразитный диод полевика. Конденсатор подключенный к ножке 6 ОУ TP1562A состоит из двух параллельно включенных.
Причем один я отпаивал и у него был номинал 0,15 мкФ ( на схеме 0.1 мкФ). зачем так сделано — не знаю, возможно потому что детальки типоразмера 0402. Появился защитный диод на лапке 3 операционника ( от 24 вольт). Может быть и еще что-то отличается. При желании схему можно уточнить по фотографиям печатных плат.
Схема подключения (позаимствовано из сети):
Основная претензия покупателей к данному регулятору сводится к тому, что в состоянии «из магазина» диапазон регулировки слишком велик. Действительно, когда я первый раз включил плату, верхняя температура уехала за 500 градусов. Нижняя температура была в норме — 190. 200 градусов.
Поначалу в схеме был правильный делитель-регулятор температуры, а последних версиях платы его переделали какой-то уж слишком заумный «интеллектуальный». Вот так в сети предлагается подстраивать границы диапазона регулирования температуры.
Обнаружив по бокам от потенциометра дополнительные площадки для подстройки, я поначалу обрадовался, но потом обратил внимание, что сам потенциометр включен как -то странно (странно, естественно, именно для такого применения в схемах) просто крайними выводами на полное напряжение питания 5 В. Делитель, который был на печатной плате я нарисовал ( см. скан ниже). Мне неловко, конечно, как инженеру на пенсии, но как такое можно рассчитать я не знаю. Просто подпаять к площадкам два переменных резистора крутить их поочередно и загнать регулировку в нужные границы температуры, конечно можно попробовать. Я решил, что лучше будет сделать делитель традиционного вида, который можно рассчитать заранее, если есть градуировочные таблицы для термопары.
До сих пор не очень задумывался, а как устроено жало Т12, хотя обзор на муське с полным распиливанием видел. Поискал тот обзор и там обнаружилась ссылка на патент Hakko с картинками. Внутри жала T12, собственно, по конструкции не одна, а две термопары у обоих концов нагревателя. Это не считая спаев под пластиковым колпачком и мест контакта колец с платой в ручке паяльника.
В обе термопары входит нихром и еще чего-то, что выведено наружу. Температуры всех этих паразитных «холодных спаев» неизвестны. И тут, глядя на текст патента, увидел картинку, где показаны милливольты с термопары Т12 ( по-видимому снятые просто при натурной эксплуатации) по сравнению с термопарой ТХА (К). Я картинку немного дорисовал и отсканировал.
А из этой картинки можно сделать простой практический вывод. Встроенная термопара жал Т12 выдает милливольт примерно в два раза меньше, чем ТХА. Имея эти данные, можно рассчитать делитель на плате «616». Сразу скажу результат. Не совсем получилось. Чего-то недоучёл. Нижняя температура и диапазон регулировки более-менее совпали. А вот верхняя граница диапазона не «рассчиталась» на 15.
50%. Может быть температуру «холодных концов» нужно было выбрать не 30 градусов, а побольше. Расчет был простой. У нас весь диапазон рабочих температур ( 150-180… 380-400 градусов) — это 10 милливольт разницы в показаниях термопары ХА. Или в два раза меньше для жала Т12.
Соответственно, на концах ( комплектного от платы 616) потенциометра 10 кОм нужно эти 10 милливольт получить. Это дает ток делителя 10 мВ/10 кОм=1 мкА.
Остальные резисторы рассчитываются исходя из уже известного тока, с учетом что вся цепь запитана от напряжения 5 В. Поскольку у меня нет резистора с номиналом 4,984 МОм, я просто все полученные цифры поделил на 4,984 поэтому расчетный номинал верхнего резистора делителя — 1 МОм. Переменный резистор 10 кОм нужно превратить в 2 кОм, поэтому он зашунтирован резистором 2,5 кОм.
А на практике оказалось, что для получения диапазона регулировки 150. 380 градусов номиналы резисторов верхнего плеча нужно увеличить. На схеме: для A1322 номинал — 1.5 МОм, для жал T12 — 2.3 МОм. Новый делитель подпаивается к плате в крайние точки установки переменного сопротивления. Резисторы старого делителя 73 кОм и 50 Ом нужно с платы удалить.
Пределы регулировки — на картинках.
На рисунках делители отличаются только номиналом верхнего плеча, остальные резисторы одинаковые. Это позволяет сделать универсальный контроллер как для паяльника с жалами Т12, так и для паяльников с нагревателем А1322 ( паяльники с жалами 900M, Hakko 907, 936 и аналоги. На рисунке нагреватель назван 1321 — это ошибка.). Резистор 1,5 или 2,3 Мом можно выбирать переключателем или перемычкой.
В коробочку можно поставить оба типа разъемов ( GX12-5 и GX16-5). В разъеме GX16-5 ( паяльник Hakko-907) контакты 2 и 4 нужно соединить перемычкой. Контакт 5 — плюс термопары (плюс жала T12). Аналогично можно использовать и паяльник SL-I ( теперь уже раритетный) от паяльных станций Solomon. В разъеме под этот паяльник ( СГ-5, ОНЦ-ВГ, DIN) нужно соединить перемычкой ножки 4 и 5. Ножка 1 — плюс термопары.
Кстати, в качестве бонуса, по частоте включения светодиода на плате «616» можно отличить условно хорошие жала T12 от непонятно каких. Увидел случайно в процессе экспериментов, что одно из жал ( топорик Т12, который шел в комплекте с купленной на Али ручкой паяльника включается гораздо реже и время включения около секунды.
Объяснить это можно плохим тепловым контактом между термопарой и нагревателем-жалом. Такое впечатление, что кончик термопары просто в воздухе висит. Или нужно было его «прокалить» подольше ( не помогло!). В результате за секунду включенного состояния это полубракованное жало успевает убежать от установленной регулятором-потенциометром температуры весьма далеко.
Потом долго остывает. На средних температурах около 250 градусов амплитуда болтанки температуры 15. 20 градусов. А нормальное жало T12 стоит на заданной температуре, как вкопанное. Паяльники 907 и SL-I еще более инерционны. Там время включения нагревателя — несколько секунд.
Но при этом они не перегреваются, просто не успевают.
При подключении паяльников с 4 проводами схема начинает усиленно ловить помехи. На жалах Т12 с 2-мя поводами это не так заметно. Красный светодиод начинает моргать. Работе платы это не мешает, но должно увеличивать размах колебаний температуры жала. Для снижения влияния помех можно добавить емкость конденсаторов в фильтре на входе ОУ.
В заключение предоставляю краткий отчет о проделанной работе.
Макет «паяльной станции» на плате «616» с подключенным делителем и паяльником с жалами 900М и нагревателем А1322 (нихром + термопара).
Кроме коробочки сделал еще и винтажный паяльник под жала T12 из старого советского.
Всех поздравляю с Новым годом! Счастья и здоровья!
Дополнение. Я как-то в процессе упустил, что нужно было проверить эти китайские регулировочные перемычки. Перемычку, которая поднимает температуру паять не стал, чтобы жало не испортить, а перемычка «Lo» смещает диапазон регулировки вниз от значений 200. 520 градусов к границам 180. 480 градусов.
Перемычка работает, но смещение маловато.
Добавить в избранное Понравилось +91 +142
- 03 января 2022, 16:30
- автор: stump
- просмотры: 11765
Источник: mysku.club
Простой терморегулятор своими руками
Огромное количество электрических приборов, используемых в быту и промышленности, основывают свою работу на определении уровня температуры окружающей среды. Измерительный элемент в них представляет собой датчик температуры, срабатывающий при нагревании или охлаждении до установленного уровня. Их можно приобрести в большинстве магазинов, ими комплектуются духовки, контроллеры и прочие устройства, но гораздо интереснее изготовить терморегулятор своими руками.
Далее мы рассмотрим принцип действия и варианты изготовления такой самоделки.
Немного теории
Любой терморегулятор конструктивно включает в себя три основных блока:
- измерительный;
- логический;
- исполнительный.
Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:
На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.
На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.
Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:
Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.
При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.
Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.
Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:
- для контроля работы электрического отопления по температурным показаниям в помещении;
- для установки уровня температуры в самодельном инкубаторе;
- при подключении теплого пола для контроля его работы;
- для установки температурного диапазона работы двигателя, с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
- для паяльных станций или ручных паяльников;
- в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
- в духовках, печах как бытового, так и промышленного назначения.
Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.
Обзор схем
В зависимости от типа элементов, входящих в состав терморегулятора, различают механические и цифровые терморегуляторы. Работа первых основана на срабатывании реле, вторые имеют электронный блок, управляющий процессами. Примеры работы нескольких схем рассмотрим далее.
На приведенной схеме измерение происходит за счет резисторов R1 и R2, при температурных колебаниях переменный резистор R2 изменит величину падения напряжения. После чего через усилитель терморегулятора, представленный парой транзисторов, начнется протекание электротока через катушку реле K1.
Когда величина тока в соленоиде создаст магнитный поток достаточной силы, сердечник притянется и переключит контакты в другое положение. Недостатком такого терморегулятора является наличие магнитопроводящих частей, которые из-за гистерезиса вносят дополнительную поправку на температуру помимо измерительного органа.
Данный терморегулятор, в отличии от механического термостата, не использует подключение реле, поэтому является более точным. Его применение оправдано в тех ситуациях, когда несколько градусов могут сыграть весомую роль, к примеру, при контроле температуры нагрева двигателя или в инкубаторе.
Здесь изменение температурного режима фиксируется резистором R5, благодаря которому терморегулятор изменяет электрические параметры работы. Для сравнения и усиления разницы поступающего с полуплеч электрического параметра применяется микросхема К140УД7.
Для контроля нагрузки в схеме устанавливается тиристор VS1, в данном примере терморегулятора ограничение составляет 150Вт, но при желании может подбираться и другой параметр. Но следует учитывать, что эксплуатация тиристора в качестве ключа приводит к его нагреванию, поэтому с увеличением мощности необходимо установить радиатор для лучшей теплоотдачи.
Создаем простой терморегулятор
При ремонте бытовой электротехники вы могли сталкиваться с ситуацией, когда со строя выходил терморегулятор. Хоть это и небольшая микросхема, устанавливаемая для контроля величины нагрева или охлаждения чего-либо.
Увы, стоимость такого элемента заводского изготовления довольно высока, поэтому куда выгоднее собрать терморегулятор самому. Схема достаточно простого самодельного терморегулятора приведена на рисунке ниже.
Для его изготовления вам понадобится:
- понижающий трансформатор с 220 на 12 В;
- шесть диодов (в рассматриваемом примере используются IN4007);
- конденсаторы на 47 мкФ, 1 мФ и 2 мФ;
- микросхема для стабилизатора на 5В;
- транзистор (в рассматриваемом примере это КТ814А);
- стабилитрон с регулируемым параметром (TL431);
- резистивные элементы на 4,7; 160, 150 и 910 кОм;
- резистор с изменяемым сопротивлением на 150 кОм;
- термозависимый резистор 50 кОм;
- светодиод;
- электромагнитное реле 100 мА с питающим напряжением 12В (в рассматриваемом примере используется автомобильный вариант);
- кнопка и корпус.
Процесс изготовления состоит из таких этапов:
- При помощи паяльника соберите вышеперечисленные детали на печатную плату, как показано на схеме выше.
- После этого выведите измерительный орган для терморегулятора на открытое пространство, чтобы установить в нужную локацию.
- Установите переменный резистор на жесткий каркас и нанесите градуировку температурных режимов для настройки прибора.
- На клеммник подключите шнур питания.
В данном случае клеммник взят со старого прибора, располагавшегося в корпусе.
- Подключите все отдельно размещенные элементы к плате и закройте корпусом.
После сборки терморегулятора его можно установить в любое место, к примеру, для обогрева и подключить в цепь питания электрического котла. В случае, когда радиаторы отопления нагреют помещение до установленной температуры, контакты реле разорвут цепь и прекратят электроснабжение. При остывании цифрового термометра, снова произойдет включение отопления и снова пойдет нагрев. Если вас не устраивает температурный режим, его можно изменить настройкой датчика.
Источник: www.asutpp.ru
Как сделать терморегулятор — пошаговая инструкция, как собрать и подключить простой термостат в домашних условиях (75 фото)
Терморегуляторы могут быть очень разными. От самых простых, которые лишь управляют включением и выключением нагревателя (или охладителя), до сложных ПИД (пропорциональных интегрально дифференциальных) систем, такие устройства не только включают и выключают, но ещё и управляют мощностью подключенного нагревателя, или охладителя.
На контроле текущей температуры, основана работа большого числа, самых разных электроприборов, как бытовых, так и промышленных устройств.
Измеряется температура различными датчиками, в простейших устройствах, этот датчик попросту замыкает и размыкает цепь, при достижении объектом контроля установленного значения температуры. Такое устройство, можно легко приобрести, однако гораздо интереснее сделать терморегулятор своими руками.
В сети интернет, на многих ресурсах, можно найти инструкции для терморегулятора своими руками.
Терморегулятор Terneo S белый
Содержимое обзора
Обязательный состав термостата
Каждый термостат, обязательно содержит такие модули:
- Измерительный блок (датчик температуры); логический блок (блок сравнения); исполнительный блок (электронный, или электромеханический выключатель);
- Работу же терморегулятора можно описать так: логический блок сравнивает температуру с заданной, и на основании результатов сравнения выдаёт исполнительному блоку команду на включение, или выключение нагревателя (охладителя).
- Многие датчики температуры представляют собой измерительный мост (как правило резистивный). Такой мост состоит из четырёх сопротивлений, из которых три резистора имеют постоянное сопротивление, а один резистор изменяет сопротивление в зависимости от температуры.
Внимательно изучив схему включения резисторов для образования блока логики (сравнения) можно обратить внимание на то, что сопротивления резисторов (всех, кроме одного) постоянны, сопротивление же одного резистора, изменяется в зависимости от температуры, этот резистор и служит датчиком, который и измеряет температуру окружающей среды, а остальные резисторы, являются элементами блока сравнения температуры с заданной.
При изменении сопротивления датчика, на одной из диагоналей схемы появится потенциал, который можно использовать для управления исполнительным механизмом термостата.
Обычно, для окончательного сравнения сопротивления датчика температуры с заданным задатчиком сопротивлением, применяют микросхему компаратора, которая и является логическим блоком термостата.
- При достижении определённой (заданной) температуры, на выводах компаратора, появляется напряжение, которое и можно использовать для дальнейшего управления исполнительным механизмом, а он, в свою очередь, включит, или отключит нагревательный элемент (или охладитель).
- Таким образом, работают различные устройства, для работы которых нужно отслеживание температуры какого-либо объекта. Это могут быть системы электрического отопления, водонагревателя, инкубатора или тёплого пола, паяльной станции, системы охлаждения двигателя. Управления печами, или холодильным оборудованием.
- Как видно из этого перечисления, применяться терморегулирующие устройства могут в самых разнообразных областях.
В зависимости от того, как именно происходит регулирование температуры, термостаты принято различать по принципу их действия, а именно, на электромеханические и электронные, из электронных можно выделить цифровые устройства.
Работа первых двух типов состоит в срабатывании исполнительного механизма при достижении объектом заданной температуры, а в цифровых устройствах, сигнал с датчика может быть предварительно обработан, именно поэтому, подобные устройства, чаще других применяются в ПИД регулирующих устройствах.
Терморегулятор Varmel RTC 70.26 белый
Особенности схем терморегуляторов
В терморегуляторах, исполнительным устройством может являться электромеханическое реле, в тех же случаях, когда исполнительный механизм питается переменным напряжением, в качестве исполнительного устройства, легко может быть применён тиристор.
- Несомненным плюсом применения тиристора перед электромагнитным реле является то, что в нём отсутствуют механические контакты, а это очень положительно сказывается на сроке службы данного элемента (особенно, при управлении мощными нагрузками).
- Основным же преимуществом реле, является малое падение напряжения на его контактах во включенном состоянии. А это, в свою очередь, существенно уменьшает его нагрев по сравнению с тиристором.
Компаратором же, может служить как специализированная микросхема, так и микросхема обычного операционного усилителя.
Терморегулятор PLTEK 1350 белый
Микросхема терморегулятора
Современный уровень интеграции электронных устройств позволяет оформить это устройство в одной микросхеме, такие микросхемы можно часто встретить в самых разных бытовых и промышленных приборах.
Однако при выходе такой микросхемы из строя, зачастую, заменить её просто не на что. Потому, для того чтобы отремонтировать терморегулятор, зачастую, вместо такой микросхемы применяется самодельный терморегулятор, собранный на отдельных элементах.
Конечно, такое устройство намного больше чем микросхема, однако, если позволяют габариты устройства, то применение такого устройства может быть вполне оправдано.
Терморегулятор STC-3008 220 VAC
Пример терморегулятора
Терморегулятор можно изготовить из деталей, которые не являются дефицитными. Их легко можно приобрести в большинстве городов.
Схема терморегулятора приведена на рисунке, она представляет собой простой терморегулятор.
- Для питания устройства применяется источник на основе понижающего трансформатора, в качестве диодного моста, применяются маломощные диоды, подходящие по обратному напряжению, например, 1N4007.
- В качестве сглаживающего фильтра применён электролитический конденсатор, также, в блоке питания использован интегральный стабилизатор напряжения, с выходным напряжением в пять вольт.
- Также применяется транзистор средней мощности, с прямой проводимостью, например, это может быть транзистор КТ816А. Также, в схеме применён так называемый, управляемый стабилитрон TL431.
- Резисторы постоянного сопротивления с номиналами 4,7; 160, 150 и 910 кило Ом. И переменное сопротивление на 150 кило Ом. В качестве термодатчика использован терморезистор 50 кило ом.
Характеристика этого сопротивления (положительная, или отрицательная) зависит от того, какой нагрузкой будет управлять термостат (нагревателем или холодильником).
В качестве индикатора работы устройства используется светодиод, а как коммутирующий элемент, применено, электромагнитное реле с напряжением срабатывания двенадцать вольт (например, автомобильное).
Также используется фиксируемый выключатель на достаточный ток и корпус с объёмом достаточным для размещения устройства. Также, для удобства монтажа, рекомендуется изготовить печатную плату, согласно схеме изготавливаемого устройства.
Терморегулятор Grand Meyer MST-1 белый термопласт
Последовательность работ
Смонтировав схему выбранным способом, следует установить датчик таким образом, чтобы он, при работе, контролировал температуру необходимого объекта.
- Переменный резистор, следует установить таким образом, чтобы к нему был обеспечен удобный доступ.
- После чего, нужно нанести шкалу задаваемых температур, которые будут поддерживаться термостатом.
После того как все эти работы будут выполнены, к устройству подключают шнур питания (если сделать это раньше, то он будет сильно мешать при работе).
После сборки и настройки устройства, его помещают в корпус.
Источник: electricsexpert.ru