Настройка солнечного контроллера с Алиэкспресс

Дополнение спустя четыре года использования: Ниже описание контроллера спустя всего неделю использования, но спустя уже четыре года контролер доказал свою безотказность и надёжность . То что есть расхождение по напряжению на 0.3-0.4 вольта это оказывается температурная компенсация, и так и должно быть. Покупал я его здесь, цена сейчас снизилась значительно, всего 33$ — Контроллер для солнечных батарей MPPT 30A

В контроллере действительно есть эффект МРРТ, хотя внутри нет трансформатора. Он действительно добавляет мощности как mppt контроллеры. Я проверял, на входе контроллер держит около 17 вольт, и ток входной меньше, а на выходе уже по напряжению акб и ток больше. Но это не настоящий MPPT, он не может отслеживать точку максимальной мощности и работает только по заложенному алгоритму. А так это отличный контроллер за свои деньги, с дисплеем и возможностью настройки.

Приехал заказанный на али экспресс контроллер для солнечных панелей Solar 30 MPPT 12/24v 30A. Обошелся всего в 50$, что в два-три раза дешевле чем в наших интернет магазинах. Думал что контроллер будет по солиднее, но когда оказался в руках то показался совсем маленьким и легким, вес менее 500 грамм. Пришел в небольшой посылке, правда внутри бултыхался, так как был в картонной коробочке и ничем не обложенный, только сама коробка снаружи защищена паралоном. Внутри небольшой листок с инструкцией на английском, и в пакетике датчик температуры.

Обзор китайского солнечного контроллера RBL-10A (особенности и недостатки)

Как получил контроллер то в этот же вечер подключил его. Сейчас работает уже больше недели и думаю пора уже написать о нем свой отзыв.

Вкратце основные возможности контроллера

Так же отображается температура окружающей среды на экране. Сверху есть USB выход, через него можно например заряжать телефон. Все входы и выходы обозначены на самом контроллере, поэтому подключение думаю проблем ни у кого не вызовет, самое главное подключать первым аккумулятор, а потом солнечные панели и потребителей. Напряжение 12 или 24 вольта контроллер сам определяет во время подключения аккумуляторов.

Контроллер я разбирать не стал так как видел внутренности его в интернете. Там 6 мощных ключей, по 2 на вход, выход и нагрузку, рассчитаны на 30Ампер, поэтому нагрузку можно до 30Ампер подключать. Кстати хоть и написано на этом контроллере что он MPPT, это не совсем так, это PVM(ШИМ) контроллер, а MPPT просто рекламный ход. Я не заметил за время использования никакой прибавки мощности. Как было у меня максимум 12А с двух панелей по 100 ватт, так оно и есть, то-есть обещанного прироста до 30% нет, хотя может мои дохлые аккумуляторы больше не могут переварить, ну если что опровергну если вдруг увижу больше 12А.

О контроллере солар30 MPPT

Первое что бросилось в глаза это не точные показания контроллера, занижает на 0,4 вольта показания напряжения. Вообще оно у него как то плавает, сравнивал с показаниями одновременно мультиметра и ваттметра, бывает что разница на 0,4 вольта, а бывает что почти совпадает с ними. Выставляю на контроллере 14,2 вольтаа по факту напряжение плавает 14,5-14,8вольт. Но это мелочи, сейчас ставлю 13,8вольт, и реально 14- 14,4 вольта держит контроллер.

Так же и показатель ампер отображает информацию не верно и занижает показатель. Например когда включено светодиодное освещение, то контроллер может показывать ток потребления как 0,6А, та и 0,2А, в общем по разному, хотя ваттметр, который включен на выходе контроллера всегда показывает точно 0,5А. Если нагрузка превышает 2А, то контроллер занижает показатель на 0,5А в среднем. Но это я думаю не критично, хотя хотелось бы хоть какой то точности, а то одни и теже потребители показывают всегда немного разное потребление.

Ну и еще претензия по отображению процентов количества энергии в аккумуляторе. Контроллер показывает 100% зарядку при 13,8вольт, а 0% при 10,0 вольт. При этом как только наступает вечер и прекращается зарядка, контроллер показывает зарядку акб всего 60%. Казалось бы, куда так быстро делось аж 40% энергии. А все просто, напряжение аккумулятора без зарядки приходит в норму и падает до 12,7вольт, о контроллер считает его недозаряженным, хотя по факту в аккумуляторе реально 100% процентов энергии.

Так же и нижний порог в 10,0 вольт, при котором количество энергии на экране контроллера 0% тоже не верен. Везде где я читал про свинцово кислотные аккумуляторы пишут что разряжен полностью аккумулятор уже при 11,7 вольта если без нагрузки. Конечно, чем больше нагрузка тем сильнее просаживается напряжение, поэтому за основу взяли 10,0 вольт чтобы брать всю энергию даже мощными потребителями. К примеру с потреблением 100-200ватт и более напряжение заметно проседает, и при 10.0 вольт показатель емкости 0%, но стоит отключить нагрузку и напряжение поднимается до примерно 11вольт.

Но и это не правильно, все равно если ставить порог отключения на 10вольт, то маломощные потребители высаживают аккумулятор почти до 10-ти вольт пока не сработает отключение. И получается что из аккумулятора забрали все что можно и при этом высадили его еще больше, и в таком состоянии он как минимум до следующего солнышка. При таких условиях естественно наступает сульфатация пластин. Плотность электролита сильно падает вследствие глубокого проникания кислоты в пластины, а потом уже сульфат не дает ей выйти обратно и подняться плотности при зарядке, а ионам вернутся на свои места. При этом еще деградирует активная масса пластин, которая расширяется и постепенно теряется контакт с решеткой.

В общем в следствии всего этого аккумулятор быстро теряет емкость и умирает. Хотя энергия в нем остается и его можно и до 8-ми вольт разрядить, но это уже извращение и гарантированная смерть аккумулятора в ближайшее время. Кстати именно по этим причинам я брал контроллер с возможностью ручного выставления порогов включения и отключения. А в совсем дешевых контроллерах обычно порог на 10 вольт настроен, и его изменить нельзя, поэтому многие жалуются что аккумуляторы быстро умирают. Я считаю что лучше ставить порог отключения потребителей на 11,7вольт как и положено, пусть лучше там что-то останется чем аккумулятор умрет от сульфатации в первый же год.

Как пользоваться зажимом для волос с Алиэкспресс

А смерть аккумулятора происходит в основном зимой. Солнца нет, аккумуляторы не успевают до конца заряжаться, да еще каждую ночь до 10-ти вольт высаживаются, вот вам и постоянный разряд ниже минимальной нормы, сульфатация и стремительная потеря емкости, особенно для кальциевых аккумуляторов.

А так контроллер своих 50$ вроде стоит, но никак не больше, хотя качество и точность оставляют желать лучшего. Но лучше за такую цену нет, все хорошее от 200$ начинается, поэтому буду считать этот контроллер нормальным.

08.08.2018 . Опубликовано в Новости

Пока полный материал готовится, выкладываю только инструкцию на русском языке. За перевод прошу не судить, но, если внимательно всё прочесть, то разобраться можно, и не придется фантазировать по поводу установки некого напряжения отключения. Нет там никакого отключения, и в принципе быть не может.
Каждый контроллер рассчитан на определённый типа аккумуляторов, и зарядное напряжение зашито в память жестко.

Специально выписал точно такой же контроллер из Китая, с Aliexpress, как придет посылка, обязательно сделаю видеоролик.

А пока только инструкция к контроллерам Kw1210, Kw1220, и Kw1230 на русском языке. Впрочем, она подойдет и к другим подобным контроллерам, просто, там функционал пошире.

В предыдущей части была рассмотрена и проверена работа платы BMS, обеспечивающей корректный заряд литий-ионного аккумулятора. Китайская почта наконец доставила Solar charge controller, так что пора протестировать и его.

Результаты тестирования под катом.

Контроллер заряда (Solar charge controller)

Данное устройство является основным во всей системе — именно контроллер обеспечивает взаимодействие всех компонентов — солнечной панели, нагрузки и батареи (он нужен, только если мы хотим именно накапливать энергию в батарее, если отдавать энергию сразу в электросеть, нужен другой тип контроллера grid tie).

Контроллеров на небольшие токи (10-20А) на рынке довольно-таки много, но т.к. в нашем случае используется литиевая батарея вместо свинцовой, то нужно выбирать контроллер с настраиваемыми (adjustable) параметрами. Был куплен контроллер, как на фото, цена вопроса от 13$ на eBay до 20-30$ в зависимости от жадности местных продавцов. Контроллер гордо называется «Intelligent PWM Solar Panel Charge Controller», хотя по сути вся его «интеллектуальность» заключается в возможности задания порогов заряда и разряда, и конструктивно он не сильно отличается от обычного DC-DC конвертора.

Подключение контроллера весьма просто, у него всего 3 разъема — для солнечной панели, нагрузки и аккумулятора соответственно. В качестве нагрузки в моем случае была подключена светодиодная лента на 12В, аккумулятор все тот же тестовый с Hobbyking. Также на контроллере есть 2 USB-разъема, от которых можно заряжать различные устройства.

Все вместе выглядело так:

Перед тем как использовать контроллер, его надо настроить. Контроллеры этой модели продаются в разных модификациях для разных типов батарей, отличия скорее всего лишь в предустановленных параметрах. Для моей литиевой батареи c тремя ячейками (3S1P) я установил следующие значения:

Как можно видеть, напряжение отключения заряда (PV OFF) установлено на 12.5В (исходя из 4.2В на ячейку можно было поставить 12.6, но небольшой недозаряд положительно сказывается на количестве циклов батареи). Следующие 2 параметра — отключение нагрузки, в моем случае настроено на 10В, и повторное включение заряда на 10.5В. Минимальное значение можно было поставить и меньше, до 9.6В, небольшой запас был оставлен для работы самого контроллера, который питается от той же батареи.

Тестирование

С разрядом проблем ожидаемо не было. Заряда батареи хватило чтобы зарядить планшет, также горела светодиодная лента, и при пороговом напряжении в 10В, лента погасла — контроллер отключил нагрузку, чтобы не разряжать батарею ниже заданного порога.

А вот с зарядом все пошло не совсем так. Вначале все было хорошо, и максимальная мощность по ваттметру составила около 50Вт, что вполне неплохо. Но ближе к концу заряда подключенная в качестве нагрузки лента стала сильно мерцать. Причина ясна и без осциллографа — две BMS не очень дружат между собой.

Как только напряжение на одной из ячеек достигает порога, BMS отключает батарею, из-за чего отключается и нагрузка и контроллер, затем процесс повторяется. Да и учитывая что пороговые напряжения уже заданы в контроллере, вторая плата защиты по сути и не нужна.

Пришлось вернуться к плану «Б» — поставить на батарею только плату балансировки, оставив контроллеру управление зарядом. Плата 3S balance board выглядит так:

Бонус этого балансира еще и в том, что он в 2 раза дешевле.

Конструкция получилась даже проще и красивее — балансир занял свое «законное» место на балансировочном разъеме батареи, к контроллеру батарея подключена через силовой разъем.
Все вместе выглядит примерно так:

Больше никаких неожиданностей не было. Когда напряжение на батарее поднялось до 12.5В, потребляемая от панелей мощность упала практически до нуля а напряжение увеличилось до максимума «холостого хода» (22В), т.е. заряд больше не идет.

Напряжение на 3х ячейках батареи в конце заряда составило 4.16В, 4.16В и 4.16В, что дает в сумме 12.48В, к контролю заряда, как и к балансиру претензий нет.

Заключение

Система работает, почти как и ожидалось. Днем электроэнергия может накапливаться, вечером ее можно использовать. В финальной версии батарея будет заменена на блок из элементов 18650, которые уже описывались в предыдущей части. Емкость батареи можно увеличить до 20Ач, больше для балконной системы уже избыточно.

Если же приобрести другой балансир, можно использовать и LiFePo4-аккумуляторы, достаточно установить нужные пороги напряжений в контроллере. Однако в моем случае, смысла в этом скорее всего нет — стоимость LiFePo4 на 10-20Ач составляет 80-100$, что уже сопоставимо со стоимостью Grid Tie контроллера, который я собираюсь протестировать в дальнейшем.

Еще исключительно для тестов (понятно что экономического смысла в этом нет) была заказана батарея ионисторов на 12В, благо цены падают и сейчас они относительно дешевые. Будет интересно проверить, на сколько хватит их заряда. Stay tuned.

Как удалить данные с телефона Oppo

Примечание: показанная на фото батарея от Hobbyking была поставлена исключительно для теста. Эти батареи не тестировались для постоянного использования в подобных системах, также их не рекомендуется оставлять без присмотра.

Более-менее окончательная версия батареи выглядит вот так:

Это 12 ячеек 18650, соединенных в группы параллельно по 4. Примерная емкость батареи около 12ач, этого хватает для зарядки разных гаджетов и для вечернего освещения комнаты светодиодной лентой. В батарее используются элементы Panasonic, те же что и в автомобилях Tesla S, надежность данных ячеек можно считать вполне хорошей.

Для желающих посмотреть видео-версию, ролик выложен в youtube.

Источник: vmeste-masterim.ru

Мини-обзор контроллера Anself 20A 12V/24V для солнечных панелей

Небольшое дополнение к моему обзор солнечной “электростанции” с одно миниатюрной солнечной панели. Однако, для постройки схемы нужны были все составляющие и я немного “на вырост” взял солнечный контроллер Anself 20A 12V/24V.

В процессе реализации своей “мечты” о собственной солнечной электростанции я начал постепенно подбирать компоненты, кроме самой же гибкой солнечной панели на 50вт. Инвертор у меня был и как раз отпала было необходимость использовать его как автомобильный девайс, отдельно был найдет в оффлайне аккумулятор, товарищ помог с обжимкой проводов и мелкий коннекторах я уже не упоминаю. А вот контроллер приобретался отдельно, чтоб схема была полной и с запасом на будущее. Ведь запас карман не тянет (с)

Под мою актуальную панель хватило бы и самого простецкого контроллера на 10А и за условные 10-15 баксов, но я выбрал более навороченный Anself 20A 12V/24V – https://www.tomtop.com/p-h16059-2.html

Что был дисплей с наглядной демонстрацией нюансов процесса, чтоб было 2 юсб, которые на данный момент все таки будут одним из самый востребованных источников питания и чтоб были всякие защиты от перезаряда/переразряда/перегрева и прочее:

Rated Voltage: 12V / 24V (Auto Switch)
Max. Charge/Discharge Current: 10A / 20A (Optional)
Max. Solar Panel Input Voltage: ≤50V
Stop Charge Voltage: 14.7V/29.4V
Low Voltage Recovery: 12.2V/24.4V
Low Voltage Protection: 10.5V/21.0V
USB Output Voltage/Current: 5V 2A
No Load Loss: ≤10mA
Temperature Compensation: -3mV/Cell/°C
Operation Temperature: -20°C~60°C

Есть небольшая инструкция и по идее можно регулировать высокий и низкий пороги заряда/разряда, можно настраивать таймер работы да по всякому извращаться режимами работы контроллера.

Но посмотрим лучше на сам девайс, оставим эти маркетологические заверения. Пускай он и в пластиковом корпусе, но главная радиаторная пластина сзади – она из металла с ребрами в виде элемента охлаждения.

Более того, внутри на плате есть теплоотводящие прокладки для лучшего рассеивания тепла на заднюю крышку. В моем случае это не критично важно, но все таки приятно осознавать тот самый “запас”.

При желании даже можно всю плату достать и рассмотреть.

Но это все теория, вернемся к делу. По факту были сняты универсальные коннекторы из солнечной панели и обжаты на обычные, с маркировкой маркером =) Они пошли в первую пару контактов, во вторую пару пошли контакты аккумулятора, а в третью пару – инвертора. Все просто, но без аккумулятора не стартует система.

Без инвертора можно снимать заряд с юсб портов и заряжать аккумулятор, но это все применимо только в моих масштабах небольшой панели на 50 ватт.

В целом, я думаю к нему вполне применимо добавить еще 2-3-4 панелей и довести мощность до предела в 20А, но опять же памятую о китайском происхождении устройства. И, естественно, также нужно понимать условной цифр в плане индикации – мой мультиметр показывал разнобой в 0.1-0.2V.

Наглядно показывает просадку при подключении потребителей, предохраняет от перезаряда и переразряда аккумулятор – ведь это все вредит элементам внутри.

Ниже отдельно видяшка с контроллером Anself 20A 12V/24V для солнечных панелей именно в сборе схемы. Я бы рекомендовал рассматривать такие недорогие компоненты для схем сродни моей – которые делаются на всякий случай и без особых требований к результату. Чтобы работало и еще имело небольшой функционал и для не самых серьезных потребителей.

Когда не нужные полукиловаттные-киловаттные и еще больше мощности, а достаточно просто рабочей схемы на всякий случай и про запас(с) Я там рассказывал в прошлом обзоре, что товарищ планирует устанавливать станцию на 10 кВт и вот туда рассматривается инвертор на 20кВт, дабы тоже был с запасом. Но это совершенно другая история (с)

Источник: obzorpokupok.info

Контроллер заряда солнечной батареи МРРТ или ШИМ — что лучше выбрать?

Контроллер заряда солнечной батареи

Для чего нужен контроллер заряда для солнечной батареи?

Аккумуляторы, которые используются в комплекте солнечных батарей для накопления заряда, имеют ряд собственных особенностей. Они нуждаются в создании определенных условий в процессе зарядки. Необходимо своевременно ограничить ток и напряжение, не допустить слишком сильного разряда и исключить перезарядку АКБ. Обеспечить эти условия может специальное устройство, наблюдающее за блоком батарей и своевременно прекращающее все процессы, когда они достигают критических значений.

Это устройство — контроллер солнечной батареи, обеспечивающий сохранность и долговечность аккумуляторов. Обойтись без этих приборов невозможно, так как бесконтрольный заряд или разрядка всегда заканчиваются выходом АКБ из строя.

Задачи, которые решают контроллеры заряда для солнечных батарей:

  • выполнение диспетчерских функций, определение текущего режим работы и изменение его при возникновении соответствующих условий
  • ограничение величины заряда, предотвращение излишнего поглощения электроэнергии
  • наблюдение за расходованием и своевременный перевод батарей в режим зарядки

Есть контроллеры, совмещающие функции источника питания. К ним подключаются низковольтные потребители, например — осветительные приборы или иная нагрузка подобного типа. Такие системы работают в малом составе и не используются в качестве полноценного источника питания для бытовой или хозяйственной техники.

Применяемые на практике виды

Существует две разновидности контроллеров, применяемых в солнечных системах:

  • PWM (в русскоязычных источниках их иногда именуют ШИМ — широтно-импульсная модуляция)
  • MPPT (аббревиатура с английского Maximum Power Point Tracking — отслеживание максимальной границы мощности)

Контроллеры, созданные на базе ШИМ, считаются устаревшими. Некоторые модели уже сняли с производства, но в продаже еще много образцов таких приборов. Они вполне эффективны и работоспособны, но по функциональным возможностям уступают новым и более совершенным контроллерам MPPT.

Специалисты отмечают, что старые виды контроллеров больше подходят для частных солнечных батарей, рассчитанных на питание сравнительно небольшого количества потребителей. Новые образцы ориентированы на работу с большими количествами панелей, дающих значительное количество энергии.

Проекторы с Алиэкспресс лучшие

Их недостатком считают:

  • высокая цена, ограничивающая возможности массового покупателя
  • сложность настройки, требующей участия опытного специалиста

Контроллеры типа MPPT широко рекламируют, но получить заметный выигрыш в производительности и эффективности можно только на больших и мощных солнечных комплексах.

Структурные схемы контроллеров

Solar panel controller - Контроллер заряда солнечной батареи МРРТ или ШИМ - что лучше выбрать?

Разбираться в принципиальных схемах приборов могут не все пользователи. Но это и не обязательно, вполне достаточно понять принцип их работы на уровне блоков или узлов прибора. Рассмотрим структурные схемы двух разновидностей контроллеров:

Устройства PWM

На входе контроллера установлен стабилизатор и токоограничивающий резистор. Этим достигается защита от превышения входного сигнала и нарушения режима работы устройства. Допустимый уровень входного сигнала у каждого прибора свой, он указан в паспортных данных. Значение определяется спецификой контроллера, зависит от особенностей схемы и параметров прибора.

После этого ток проходит через блок из двух силовых транзисторов, где происходит преобразование значений напряжения и тока. Управление этими процессами производится через микросхему драйвера, при помощи чипа контроллера. Сам драйвер предназначен для коррекции режима работы транзисторов. Одна из основных задач — регулировка уровня мощности нагрузки, предотвращающая глубокий разряд аккумуляторов.

Помимо этих компонентов в состав схемы входит датчик температуры. Он обеспечивает поддержание заданного температурного режима работы прибора, ограничивая его мощность по необходимости. Перегрев весьма опасен для контроллера, поэтому датчик относят к основным узлам схемы.

Приборы MPPT

Контроллер заряда аккумулятора от солнечной батареи, созданный по схеме MPPT, представляет собой более сложное устройство, чем PWM. Увеличено количество узлов и деталей, поскольку более тщательное выполнение алгоритмов работы требует определенных ресурсов. Основная функция устройства заключается в определении максимальной мощности солнечных батарей в текущих условиях и соответствующей перенастройке их работы.

Компараторы производят сопоставление значений напряжения и тока, определяя максимально возможную выходную мощность. По умолчанию сканирование происходит 1 раз в 2 часа, но режим можно перенастроить на более частую проверку.

Производится определение точки максимальной мощности (ТММ), определяющей напряжение, при котором выходные показатели будут максимально высокими. Заряд АКБ происходит в 4 этапа:

  • объемный. Это первый этап после ночного перерыва. Аккумуляторы активно накапливают энергию, используя всю энергию солнечных батарей
  • повышающий. Начинается сразу по достижении максимального заряда аккумуляторов. Напряжение заряда снижается, чтобы исключить нагрев и выделение газов. Этот режим, как правило, длится 1-3 часа, после чего следует переход на следующую стадию зарядки
  • плавающий. Этот этап необходим для поддержания заряда на максимальном уровне и недопущения перегрева или газоотделения, а также снижения количества накопленной энергии. Если нагрузка начинает требовать повышенной отдачи, контроллер переводит систему из плавающего режима в повышающий. Как только мощность на выходе упадет, будет вновь задействован плавающий режим
  • выравнивание. Этап, при котором происходит выравнивание плотности электролита, восстановление состояния электродов, переработка сульфата свинца

Работа контроллеров MPPT зависит от окружающей температуры. В жару выработка энергии падает, при сильном охлаждении процессы в аккумуляторах замедляются, что грозит выходом их из строя. Встроенный датчик температуры постоянно контролирует состояние и дает команду на соответствующую корректировку режима работы.

Использование контроллеров MPPT рекомендовано при мощности системы от 200 В или при нестабильном производстве энергии. Постоянное определение максимальной эффективности улучшает работу комплекса и позволяет обходиться без установки дополнительных модулей.

Способы подключения контроллеров

Перед подключением необходимо убедиться, что напряжение солнечных панелей не превышает номинал контроллера. Если оно больше, надо сменить прибор на более мощный, способный работать с высокими показателями тока и напряжения.

Перед началом работ надо выделить для установки контроллера место с соответствующими условиями — сухое, чистое, отапливаемое. Не должно быть контакта с солнечными лучами, не допускается наличие поблизости механизмов, создающих вибрацию.

PWM

Порядок подключения контроллеров PWM состоит из следующих этапов:

  • присоединение аккумуляторов к соответствующим клеммам прибора. Важно проследить за соблюдением полярности
  • в точке подключения плюсового провода необходимо установить предохранитель
  • к соответствующим контактам подключить провода от солнечных панелей, соблюдая полярность
  • на выход нагрузки включить сигнальную лампу

Важно! Нарушать эту последовательность нельзя. Если сначала подключить солнечные модули, можно вывести контроллер солнечного заряда из строя, поскольку ему будет некуда отдавать полученное напряжение.

Кроме этого, не допускается присоединение на контакты, предназначенные для соединения с нагрузкой, инвертора. Его можно присоединять только к блоку АКБ.

MPPT

Принцип подключения этих контроллеров не отличается от вышеизложенного, но могут потребоваться некоторые дополнения. Например, на мощных системах необходимо использовать кабель, выдерживающий плотность проходящего тока не менее 4 ампер на квадратный миллиметр сечения.

Перед присоединением рекомендуется еще раз выполнить несложный расчет (разделить максимальное значение силы тока на 4 и прибавить около 10-15 % на запас прочности). Это позволит обеспечить штатную работу коммутации, исключить нагрев и опасность возникновения пожара.

Перед началом подключения надо вынуть предохранители из солнечных панелей и блока АКБ. После соединения контроллера с аккумуляторами и солнечными модулями производится подключение заземляющего контура и датчика температуры. Проверяют правильность всех соединений, после чего обратно устанавливают предохранители и включают систему.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Контроллеры такого типа работают только на запуск или остановку зарядки АКБ при падении или повышении заряда. Они не учитывают дополнительные условия работы, не определяют оптимальный режим, выполняя только функции триггера, настроенного на переключение при достижении минимального и максимального значений.

Такие контроллеры в настоящее время сняты с производства и давно не используются, хотя в некоторых системах их еще можно встретить. Единственным достоинством можно назвать простоту схемы, делающую работу прибора надежной и устойчивой. Подключение выполняется путем присоединения входных и выходных проводов к аккумуляторам и солнечным панелям, никакой дополнительной коммутации не имеется.

Что лучше выбрать?

Выбор типа контроллера производится исходя из мощности и производительности системы. Если они невелики, можно ограничиться установкой контроллера PWM. Это дешевле и проще.

Однако, если комплект выдает значительную мощность и обеспечивает питание чувствительных приборов потребления, лучшим решением станет использование контроллера MPPT. Он гораздо дороже, но способен настроить максимально эффективную работу комплекса оборудования. В любом случае, окончательный выбор обусловлен возможностями владельца и особенностями имеющегося солнечного комплекса.

Видео-инструкция по сборке своими руками

Цены и где купить?

Источник: energo.house

Рейтинг
( Пока оценок нет )
Загрузка ...
Китай Покупай