Модули с Алиэкспресс схемы

Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда.

Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.

Плата защиты li-ion со сборкой полевых транзисторов 8205А

Полезные модули из Китая

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

Защита для лития 18650

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Схема модуля защиты литиевого аккумулятора на DW01

Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.

Сборка полевичков 8205

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

SEIKO S-8241 Series (защита Li-ion)

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

Схема на ААТ8660 для защиты литиевого аккумулятора

Решение от Advanced Analog Technology — AAT8660 Series.

Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 Series

FS326 Series для защиты полимерных аккумуляторов

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.

Как пользоваться посудомоечной Машиной Haier

В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.

LV51140T

Плата PCB для защиты li-ion от глубокого разряда

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схема защиты литиевого аккумулятора на микросхемах серии R5421N

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
R5421N111C 4.250±0.025 200 2.50±0.013 200±30
R5421N112C 4.350±0.025
R5421N151F 4.250±0.025
R5421N152F 4.350±0.025

SA57608

Плата защиты лития на ИМС SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
SA57608Y 4.350±0.050 180 2.30±0.070 150±30
SA57608B 4.280±0.025 180 2.30±0.058 75±30
SA57608C 4.295±0.025 150 2.30±0.058 200±30
SA57608D 4.350±0.050 180 2.30±0.070 200±30
SA57608E 4.275±0.025 200 2.30±0.058 100±30
SA57608G 4.280±0.025 200 2.30±0.058 100±30

SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

LC05111 для защиты лития

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Схемы правильных зарядок для литиевых аккумуляторов приведены в этой статье.

Oneplus что за компания

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

Источник: electro-shema.ru

FM радио модуль для самодельных приемников из Китая.

Для этого FM радио модуля можно самому сделать корпус из различных материалов так и реанимировать убитые магнитолы и радиоприемники встроив его туда.

1 Выходная мощность — 3W x 2 канала
2 Частотный диапазон — 50 Гц-18 кГц
3 Диапазон приема частот — 87,0 МГц-108,0 МГц
4 Напряжение источника питания — 3,0 V-5,0 V
6 Ток источника питания — 1000 мА при максимальной громкости, 60 мА при минимальном объеме
7 Звуковая дорожка — Стерео

6666.jpg

22_6.jpg

333_1.jpg

444_0.jpg

FM Радио модуль + Неодимовые магнитные динамики с Aliexpress

Источник: sdelay.tv

Миниобзор: модули на базе 12 В реле. Использование в самодельном УМЗЧ.

Чисто из жадности (на перспективу) были заказаны одноканальные и двухканальные релейные модули на 12 В.
Сопротивление обмотки реле 400 Ом.

1. Одноканальный модуль.

Поскольку продавец не удосужился привести схему, пришлось рисовать после получения.
Вот что получилось.

Схема — полный привет.
Управлять ТТЛ уровнями нельзя (чуть было не спалил микросхему, подключив её выход ко входу модуля).
Требуется открытый коллектор или открытый сток.
На входе схемы присутствует +11,3 В. При замыкании входа на землю происходит срабатывание реле.

Модули (равно как и обзор) прождали полтора года, пока до них дело дошло.

Для одноканального модуля нашлась задача: включение усилителя мощности (УМ) синхронно с мультимедийным проигрывателем Asus O!Play HDP-R1.

Идея простая, как мычание коровы: при включении плеера на его USB-портах появляется питание 5 В, что можно использовать для управления. Да, задним умом я понял, что надо было заказывать модули с 5 В реле.

Получилась вот такая схема:

Твёрдотельное реле РКП1А (КР293КП1А) необходимо, чтобы сохранить гальваноразвязку между нулём USB-порта плеера
и массой УМ.
Контактная группа реле — в параллель контактам сетевого выключателя УМ.

Такая особенность сетапа.

Плеер — (HDMI кабель) — ТВ (только видео)
Плеер — (оптика) — ЦАП SMSL — Громкость (PGA2311) — УМ (чисто оконечник) — АС
Таким образом, плеер гальванически развязан со звуковой системой.

Тут и ежу понятно, что реле с 5 В обмоткой упростило бы реализацию.
А пока что вот так:

Трёхконтактный разъём — от вентилятора. РКП1А на проводах спрятано под изолентой.

Испытание: подал 5 В от повербанки, всё работает.

2. Двухканальный модуль 12 В.

Фото честно позаимствовано у продавца.

На кой бес разработчик использовал оптопары — тайна, покрытая мраком.
Печатные проводники покрыты чёрным лаком, поэтому поленился срисовывать схему.
Каналы имеют общий ноль (землю). На входах (аналогично одноканальному модулю) присутствует напряжение +9,6 В.
Для срабатывания реле необходимо соответствующий вход «посадить» на землю.

Чувствительность (по току) каждого входа очень высокая: достаточно повесить резистор 33 кОм (между входом и землёй), чтобы реле сработало. Ток при этом около 0,3 мА.

Xiaomi или Oppo какая фирма лучше

Для двухканального модуля была припасена проверенная схема защиты акустических систем (АС) из какого-то журнала Радио 80-х годов:

Два экземпляра этой схемы (с другими номиналами) трудятся в других УМ (в одном с 90-х годов, в другом — примерно с 2012 года ).
Схема была собрана в симуляторе, чтобы оптимизировать порог срабатывания (ток модуля 0,3 мА, равный току базы Q1).

R1 и C1 — это ФНЧ 1-го порядка: при появлении постоянного напряжения открывается транзистор U1 или U2.
Переменная составляющая (предельный случай ~30 В (амплитудное значение), 20 Гц) уменьшается ФНЧ до значения ~0,5 В (т.е. ниже порогового напряжения открывания транзисторов U1 или U2).
Поскольку U2 включен по схеме с ОБ, то чувствительность по минусовой постоянке несколько ниже, чем по плюсовой.
Защита срабатывает при появлении постоянного напряжения на выходе УМ более +0,75 В или менее минус 2 В.

Плата защиты и двухканальный модуль, установленные в корпусе УМЗЧ:

Питание — постоянка 12 В (от того же БП, от которого работает одноканальный модуль).

Проверка работоспособности защиты АС — батарейка АА 1,5 В (1,65 В на холостом ходу).
Подключил на вход одного канала платы защиты (плюсом на вход): реле сработало; подключил батарейку минусом на вход, тоже сработало.

На этом всё. Подписывайтесь на мой тыртруб канал.
О постройке усилителя читайте «в следующем номере». ))
Всем здоровья!

Источник: mysku.me

Рейтинг
( Пока оценок нет )
Загрузка ...
Китай Покупай