Пришло время увидеть схему шокера. Она очень проста и думаю не вызовет проблем с пониманием. Через мост заряжается поджигающий кондер, и одновременно через дополнительные диоды заряжается боевой.
Эти диоды нужны чтобы конденсаторы не создавали одну цепь, иначе пришлось бы мотать отдельную обмотку транса и второй мост что весьма напряжно — изолировать транс придется не хуже выходного да и габариты будут больше. На некоторую разницу времени заряда которая в теории присутствует при таком варианте можно смело не обращать внимания, т.к. на практике ее попросту нет. Отсюда следует только одно ограничение, конденсаторы должны быть одинаковые. Что в общем то нас особо не беспокоит.
Рис.1. Схема электрошокера
Все детали не особо дефицитные, их можно свободно заказать или просто купить на базаре.. Наиболее критичны кондеры и разрядник, советую подзаморочиться и найти именно те что указаны в списке деталей т.к. от них зависят размеры шокера и качество его работы. Все остальное можно ставить что попадется под руку.
Высоковольтный преобразователь 100kV для Электрошокера / Посылка из Китая, AliExpress
Для преобразователя подходят почти любые транзисторы начиная от IRFZ24 и заканчивая IRL2505. Резисторы также некритичны и могу отличатся в ту или иную сторону.. Конденсатор на 3300 пик нужен для ограничения броска тока в момент запуска, т.е. для защиты преобразователя. При использовании довольно мощных транзисторов (IRFZ44+) его можно не ставить.
В работе этой схемы есть одна интересная особенность которую некоторые могли уже заметить. А именно при коротком замыкании контактов, например при непосредственном контакте обоих электродов с кожей, правильная работа шокера нарушается, т.к. боевой кондер не успевает заряжается до нужного напряжения. В данном случае этот косяк не так важен, как в умножительных шокерах, т.к. напряжение на конденсаторе всего около 1000 вольт, чего не достаточно даже для пробивания тонкой майки. Поэтому для простоты и удешевления конструкции этому факту не было уделено внимание. Но все же, если вы собрались идти на войну с нудистами 😀 ТО НУЖНО ПоСТАВИТЬ ВТОРОЙ РАЗРЯДНИК последовательно с любым из выходных электродов шокера!
Теперь немного о конструктивной композиции девайса. Вся схема, при использование указанных деталей, помещается на плате размером 40*45мм. Аккумуляторы представляют собой 6 штук NicD типоразмера 1/2 АА, т.е. вдвое короче обычных пальчиковых, емкостью 300 мАч. Что соответствует мощности примерно 15вт. Продаются они как запасные для радиотелефонов в виде блоков по 3 или 4 штуки.
Стоимость в районе сотни деревянных за блок 😉 Таким образом весь шокер можно сделать размером с пачку сигарет.
Последовательность сборки следующая. Для начала отказываемся от платы, Т.к. по любому в процессе придется перепаивать те или иные детали и она неизбежно туда уйдет. Берем радиатор, например из БП компа и ставим на него транзисторы. Радиатор должен либо иметь изолирующие прокладки либо тогда нужно 2 отдельных радиатора чтобы они не соприкасались между собой..
ЭЛЕКТРОШОКЕР на 50w своими руками за 5 минут!!!
Прикручиваем их туда и напаиваем все остальное прямо на весу. Таким образом начальный макет должен выглядеть как кучка хлама у вас на столе 🙂 Не забудьте зафиксировать HV выводы на нужном расстояние (для начала не более 15мм) иначе трансформатор и все остальное за ним также имеет шанс сгореть.
Включаем девайс. Питание нужно брать именно с тех акумов которые в дальнейшем пойдут в девайс, всякие там блоки питания и другие источники не подойдут! В принципе настройки шокер не требует и должен заработать сразу. Вопрос в том, как он заработает. При указанных акумах частота разрядов около 35 герц.
Если она меньше, тут возможно два варианта, либо трансформатор намотан плохо, либо вы использовали другие транзисторы и нужно подобрать сопротивления по 330 ом.
Смотрим даташит на нужный вам транз, ищем там строку «INPUT CAPACITANCE» чем больше цифра, тем меньше должно быть сопротивление и наоборот. К примеру для IRFZ44 оно может быть и 1к, а для IRL2505 не более 240 Ом. Подбором добиваемся оптимальной частоты разрядов. Далее начинаем разводить выходные контакты до предполагаемого расстояния которое вам нужно (например у меня 25мм).
Если все ок, !разводим еще на сантиметр! и в таком состояние делаем тест в течение 5 сек. Если все ок возвращаем прежнее расстояние. Этот запас должен по любому присутствовать, т.к. пробой воздуха зависит от многих факторов таких как влажность, давление, и прр., поэтому если расстояние будет «на пределе» в один прекрасный момент вся конструкция уйдет в небытие. По той же причине везде используется 2 диода вместо одного, хотя и с одним все (вроде бы) работает отлично.
Если все заработало как надо можно смело запаивать детали в плату и переходить к следующему этапу.
Поскольку мы не можем как на заводе штамповать детали из пластика, и мало у кого есть возможность использовать заводской корпус, остается одно — ЭПОКСИДКА. Процесс конечно кропотливый, но он имеет ряд своих преимуществ. В результате получается монолитный блок, который не боится ударов, попадания воды, абсолютно надежен в электрическом плане. Для изготовления вам понадобится собственно эпоксидка, ее берите много, тонкий картон от какой нибудь коробки, клеевой пистолет и еще некоторые мелочи.
Начинается процесс с вырезания основы из картона, т.е. «вид сверху». Для этого очень удобно использовать тетрадный лист на котором предварительно разметить план как и что где будет находится, затем его наклеить на картонку и вырезать.
Далее приготовьте полоски из картона шириной примерно 3см, а также клеевой пистолет.
Теперь ваша задача обклеить основу по периметру этими полосками. Процесс довольно сложный. Для загибания картона удобно использовать плоскогубцы с длинным носом или пинцет.. Клеить нужно обязательно с наружной стороны, при этом следите за герметичностью шва.
Расположите все основные детали внутри корпуса чтобы оценить их внутреннюю компоновку. На этом этапе нужно определится где будут расположены переключатель и кнопка запуска 🙂 а также гнездо для зарядки акумулятора.
Применим термоусадку. Очень удобно использовать ее для некоторого утапливания выступающих элементов внутрь. Учтите что после заливки последует обработка и где то 2-3мм снимется по бокам за счет картона. Также термоусадка позволяет достичь лучшей герметичности — на фото видно что с наружной стороны она закрыта (достаточно сжать пинцетом пока она горячая).
На этом же этапе нужно соединить все детали между собой и проверить работу шокера в таком состоянии. В качестве боевых и защитных электродов я использовал алюминиевые заклепки, потолще и потоньше соответственно. Внутри алюминия стальной стержень, так что с пайкой проблем быть не должно, но все же очень удобно использовать кислоту.
Заливаем! Тут пояснять особо нечего, но учтите что эпоксидка обладает свойством проникать всюду куда не нужно, поэтому проверьте герметичность перед заливкой. Проверили? теперь еще раз. После этого можно приступать.
Стадия обработки. Через 6-8 часов, когда эпоксидка надежно схватится она все еще остается достаточно мягкой. В этот момент можно срезать лишнее монтажным ножом, придав шокеру удобную форму для удержания в руке. Этим вы не избавите себя от необходимости делать дальнейшую обработку наждаком и шкуркой, но сэкономите много нервных клеток 😉 После обработки корпус можно покрыть каким-нибудь лаком, например цапоном.
И вот результат! После всего можно порадоваться глядя на такую штуку. Теперь можно обкусить защитные электроды до нужной длины если вы этого еще не сделали, и вперед!
Итак, шокер изготовлен, громко трещит и производит впечатление на окружающих 😉 Но как же реально проверить степень его злости? Вначале мы говорили что это зависит от тока в импульсе который дает шокер. Значит его и будем искать 😉 Ниже вы видите сравнение разряда от обычной трещалки и нашего девайса:
Видно что разряд намного толще, он имеет характерный желтый цвет и вспышки по краям, что говорит о большом токе. Насколько большом? Проведем простой тест. Возьмите обычный сетевой предохранитель на 0.25А и расположите между контактами шокера, так чтобы не было прямого контакта. Предохранитель сгорит. Это значит что выходной ток превышает 250 мА.
Сравните с долями милиампер в обычном шокере 🙂 Понятно что в реальных условиях из-за сопротивления тканей тела этот ток будет меньше, но все равно В ДЕСЯТКИ РАЗ превосходить значения для обычных гражданских и даже милицейских моделей!
Источник: www.freeseller.ru
Сборка самого мощного электрошокера — АКА-22М
Самый простой вариант изготовления электрошокера в домашних условиях, это один или несколько конденсаторов, соединённые друг с другом. Конденсаторы лучше брать большой ёмкости и вольт на 400. Отлично для изготовления электрошокера подходят квадратные конденсаторы из старой радиотехники.
Заизолировав конденсатор и припаяв к нему несколько толстых проводов, он превратится в грозное оружие после зарядки. При этом нужно понимать, что даже кратковременный удар током от электрошокера мало кому понравится. Поэтому обращаться с подобного рода устройством нужно максимально осторожно.
Мощный электрошок своими руками
Мощный электрошок своими руками на 100 Вт
Данный электрошок своими руками может собрать почти любой радиолюбитель в домашних условиях. Пиковая мощность данной модели доходит до 135 ватт — и это абсолютный рекорд мощности при таких габаритах. Шокер получился вполне карманным, имеет достаточно стильный дизайн благодаря покрытию из 3D карбона (в магазине метр такого карбона стоит порядка 4 гр .Сам шокер сделан в корпусе от китайского светодиодного фонарика, конечно, пришлось повозиться с переделкой корпуса. Несмотря на повышенную выходную мощность, шокер имеет простую конструкцию и весит не более 250гр.
Все началось с того, что на аукционе eBay были заказаны два комплекта литий-полимерных аккумуляторов с емкостью 1200мА при напряжении 12 Вольт (по паспорту 11,1 Вольт). Ток КЗ таких аккумуляторов свыше 25 Ампер. Но для таких аккумуляторов грех не сделать мощный преобразователь. Недолго думая была собрана схема мощного высоковольтного инвертора 12-2500 Вольт.
Схема построена на мощных N-канальных полевых ключах серии IRFZ48, но выбор транзисторов не критичен. Позже транзисторы были заменены на более мощные IRF3205, именно благодаря такой замене мощность удалось повысить на 20-30 ватт.
Примененный в умножителе конденсатор 5кВ 2200пФ сможет отдавать мощность 0,0275 Дж/сек, в умножителе 4 таких конденсатора. Достаточно большие потери в преобразователе, в дросселе и в диодах умножителя.
Технические характеристики:
Напряжение на выходе — 25-30кВ Максимальная мощность — 135 ватт Долговременная мощность — 70 ватт Частота разрядов 1000-1350Гц Расстояние между выходными контактами — 27мм Питание — аккумулятор (LI-Po 11.1V 1200mAh) Фонарик — имеет Предохранитель — имеет Зарядка — бестрансформаторная, от сети 220 Вольт Вес — не более 250гр
Трансформатор — был взят из китайского электронного трансформатора для питания галогенных ламп с мощностью 50 ватт. Нужно заранее снять все штатные обмотки с трансформатора и мотать новые.
Первичная обмотка мотается сразу 5-ю жилами медного провода, каждый из жил имеет диаметр 0,4-0,5мм. Таким образом, в первичной обмотке имеем провод с общим диаметром порядка 2,5мм.
Для начала нужно отрезать 10 кусков указанного провода, длина каждого куска 15см. Далее собираем две идентичные шины из 5 витков. Первичную обмотку мотаем сразу двумя шинами — 4-5 витков по всему каркасу. Далее лишний провод с концов обмоток отрезаем, снимаем лак, жилы скручиваем и залужаем .
Далее первичную обмотку изолируем 10-15 слоями обыкновенным прозрачным скотчем и начинаем намотку вторичной (повышающей обмотки) Обмотка мотается по слоям, в каждом слою 70-80 витков. Мотают эту обмотку проводом 0,08-0,1мм, количество витков 900-1200.
Межслойные изоляции делаются тем же прозрачным скотчем, для каждого ряда укладываем 3-5 слоев изоляции. Готовый трансформатор нельзя включить без нагрузки, в заливке смолой не нуждается.
Умножитель напряжения. Тут использованы высоковольтные диоды серии КЦ123Б, можно заменить на КЦ106Г или любые другие высоковольтные с обратным напряжением не менее 7-10 кВ и с рабочей частотой более 15кГц.
Готовый умножитель заливается эпоксидной смолой прямо в корпусе ЭШУ.
Выходные штыки сделаны из твердого нержавеющего материала, расстояние между ними чуть больше 25мм. Не стоит раздвигать штыки на большое расстояние, хотя пробой воздуха может доходить до 45мм.
Выключатель и кнопку нужно подобрать с током 3 А и более. Светодиоды для фонарика были сняты от китайского светильника, обычные сверхяркие. Они подключаются последовательно, питание подается через ограничительный резистор 10 Ом 0,25 ватт.
Зарядка выполнена по бестрансформаторной схеме, выходное напряжение 12 Вольт при токе 45-мА. Сейчас многие подумают, что немыслимо заряжать такие аккумуляторы этим зарядником, но ток ничтожный, заряжается долго, но аккумуляторы не вздуваются, к тому же схема простая и работает стабильно, не греется и не боится КЗ. Разумеется, если есть возможность, то желательно использовать нормальное ЗУ для зарядки таких аккумуляторов, а в моем случае такой возможности не было.
Наш шокер в десятки раз мощнее промышленных моделей ЭШУ, которые можно найти в магазинах, даже знаменитая схема Павла Богуна (ЗЛОЙ ШОКЕР) перед этим девайсом — просто игрушка.
Ну, на этой ноте и завершим нашу статью, шокер вышел хорошим, обладает супер высокой мощностью, только пока не проверялся на людях, но с таким девайсом можно смело гулять по улицам даже самых опасных районов.
Видео смотрите в нашей группе ВК
Электрошокер на основе диодов, транзистора и блока питания
Следующий вариант изготовления электрошокера имеет достаточно сложную схему. Однако и мощность такого электрошокера на порядок выше, почти 10 Вт.
Для его изготовления потребуется:
- Резисторы на 1 кОм и 680 Ом;
- Транзистор IRFZ48N;
- Два конденсатора 2n2 на 6.3 kv;
- Одно 10 амперное реле на 12 Вольт;
- Компьютерный блок питания.
Для того чтобы собрать мощный электрошокер, дополнительно придётся разработать печатную плату для компоновки всех элементов, в том числе и элементов питания. Схема соединения компонентов изображена на фотографии.
Также придётся найти подходящий корпус для электрошокера, например, можно использовать пластмассовый корпус от карманного фонарика. При этом стоит понимать всю ответственность за использование подобного рода устройства, пусть даже и в целях самообороны.
Удар электрошокером способен вызвать дезориентацию и сильный болевой шок, а также мышечные спазмы. Поэтому не все люди могут его нормально перенести, без последствий для здоровья в дальнейшем.
Чем опасны самодельные электрошоки?
Вы не боитесь ответственности, и все еще хотите сделать электрошокер своими руками? Эксперты предупреждают – помимо наказаний за его изготовление и использование, существует ряд других угроз, которые может нести такое оружие! Среди них:
- Нерегламентированная мощность. Шокеры сертифицируются недаром. Превышение некоторых параметров импульсного тока делает электрошокер очень опасным оружием, способным покалечить и даже убить оппонента.
- Опасность самопоражения. Плохо изолированные контакты, самодельный корпус, непродуманная схема – неудивительно, что «доморощенные» шокеры часто бьют током самого владельца, возгораются и даже взрываются в руках! А если такое случится во время самообороны?
- Дороговизна. Вы хотели сделать электрошокер своими руками, чтобы сэкономить? Как бы ни так! Большую часть деталей все равно придется покупать, где-то брать корпус, аккумулятор, выпрямитель, умножитель напряжения. Практика показывает, что простейший кустарный шокер обойдется никак не меньше 4-5 тысяч, даже если вручную намотать трансформатор. Меж тем, китайское устройство более высокой мощности можно купить в два раза дешевле.
Резюмируя: самодельный электрошок – это опасно, дорого и незаконно, к тому же – далеко не всегда эффективно. Если вы хотите получить оружие, а не просто поиграться с паяльником – купите фирменный разрядник.
Делаем выходной трансформатор
Для этого нам понадобится:
- 5 – 6 см полипропиленовой трубы диаметром 20 мм;
- резак;
- провод диаметром около 0,2 мм;
- ферритовый стержень 2000НМ диаметром 10 мм и длиной 5 – 6 см;
- изолента.
По окружности нашей трубы нужно проделать канавки глубиной 2 мм и шириной 2 мм. Далее берем провод диаметром 0,2 мм и наматываем его на все секции. На концы провода лучше приклеить или припаять многожильный провод для более удобного соединения.
Теперь нужно взять ферритовый стержень диаметром 100 мм и длиной 5 – 6 см. Этот стержень нужно обмотать изолентой и намотать 20 витков провода сечением 0,8 мм. Оставляем по краям 5 – 10 мм и изолируем все изолентой в несколько слоев так, чтобы он входил внутрь трубки довольно плотно.
Теперь нужно соединить две обмотки вместе с той стороны, где заканчивается НV-обмотка. Таким образом, у нас получится 3 выхода вместо 4-х: общая точка, конец первой обмотки и НV-вывод.
Трансформаторы лучше всего поместить в коробку и залить парафином. Главное -не заливать трансформаторы горячим парафином, а после заливки нужно поставить коробки возле тепловентилятора, чтобы удалить пузырьки воздуха.
Как сделать трансформатор преобразователя
Трансформатор является самой сложной частью изделия, поэтому начнем именно с него. Намотка провода на сердечник трансформатора – это очень долгий, однообразный и тонкий процесс, который требует терпения и аккуратности. Для начала нам потребуется броневой сердечник Б22 из феррита 2000НМ.
Броневой сердечник – это закрытая конструкция, в которой имеются только отверстия для проводов. Выглядит такой сердечник, как две небольшие чашечки, между которыми находится шпулька, как в швейной машинке. Намотать на него нужно тонкий эмалированный провод диаметром 0,1 мм. Его можно найти, например, в электронном будильнике. Наматывать нужно аккуратно, пока не останется около 1,5 мм свободного места.
Для большей эффективности работы трансформатора проволоку лучше мотать слоями, прокладывая между ними тонкую изоленту. Таким образом у вас получится около 5 – 6 слоев. После этого нужно заизолировать все двумя слоями обычной изоленты и намотать 6 витков проволоки диаметром 0,7 – 0,9 мм. На третьем витке делаем отвод и доматываем остальные три. В завершение склеиваем чашки между собой или обматываем изолентой.
Смотрите видео
Как сделать электрошокер?
Если рассматривать средства самообороны с точки зрения эффективности, удобства приобретения и использования, то самым лучшим вариантом можно признать электрошокер. Он не требует лицензий и разрешений в органах МВД, а благодаря небольшим размерам и весу его удобно носить в кармане и дамской сумочке.
В данной статье мы рассмотрим, как устроен электрошокер, и опишем, как можно сделать этот прибор своими руками.
Источник: camodelkin.ru
Маленький электрошокер своими руками
Обычно электрошокеры для обычного человека кажутся очень сложными в сборке, настройке и плюс получаются очень громоздкими, носить их в кармане не очень удобно, сегодня же предложу Вам собрать компактный, очень маленький электрошокер своими руками, даже не придётся мотать трансформаторы и всё собирается из доступных и недорогих компонентов. Плюс этот карманный мини электрошокер имеет мощность не более 3 Ватт, что разрешено законом и не нанесёт большой вред здоровью человека но при этом способен отпугнуть нападающего и очень ощутимо ударить его током.
Как сделать мини электрошокер своими руками, инструкция:
Будем собирать электрошокер по представленной ниже схеме.
Схема электрошокера, она состоит из аккумулятора, повышающего преобразователь и высоковольтного умножителя напряжения.
Начнём с источника питания, можно использовать аккумулятор от мобильного телефона но у меня оказался под рукой LiFePo аккумулятор и использовал его, он компактный, может выдавать большие токи, большой срок службы и может работать при низких температурах но Вы можете использовать обычный аккумулятор и всё будет работать отлично.
Также в схеме изображён преобразователь напряжение на трансформаторе и транзисторе IRFZ44 это всё заменяется повышающем модулем DC-AC из Aliexpress, стоит он копейки но зато не придётся мотать трансформатор.
Дальше идёт высоковольтный умножитель напряжения, который состоит из высоковольтных конденсаторов и диодов. Конденсаторы подойдут от 2 кВ и выше, их можно найти например, в компьютерных блоках питания, их ёмкость может быть от 1000 пФ.
Диоды тоже нужны высоковольтные, например наши диодные столбы КЦ106 или другие импульсные импортные с напряжением от 4 кВ. Я использовал диоды КЦ117.
Корпусом у меня послужила коробка от какого-то MP3 плеера, она должна быть именно из диэлектрического материала.
Вся схема электрошокера собирается навесным монтажом и в итоге схема умножителя и повышающий модуль будет залиты эпоксидной смолой в корпусе для защиты от пробоя.
Дальше размещаем в корпусе аккумулятор, тактовую кнопку для включения электрошокера и тумблер который будет служить предохранительным выключателем, чтобы случайно не ударить себя током в кармане, нажав на тактовую кнопку. При включении электрошокера этим тумблером загорается светодиод и теперь уже можно нажимать на кнопку.
Токовые штырьки для разрядов можно сделать из вилки для сети 220В, отпилив нужной длины, дальше я сбоку зачистил небольшие участки и поставил капли обычным припоем, сформировав острые конусные разрядники.
Можно внутрь корпуса поместить модуль заряда аккумулятора и заряжать от любого USB зарядника или повербанка.
На этом всё, карманный мини электрошокер готов к работе, напишите, получилось ли у Вас сделать эту самоделку и не возникли ли у Вас какие-либо трудности.
Источник: bestschemes.ru