В этой статье я решал собрать полное пошаговое руководство для начинающих Arduino. Мы разберем что такое ардуино, что нужно для начала изучения, где скачать и как установить и настроить среду программирования, как устроен и как пользоваться языком программирования и многое другое, что необходимо для создания полноценных сложных устройств на базе семейства этих микроконтроллеров.
Тут я постараюсь дать сжатый минимум для того, что бы вы понимали принципы работы с Arduino. Для более полного погружения в мир программируемых микроконтроллеров обратите внимание на другие разделы и статьи этого сайта. Я буду оставлять ссылки на другие материалы этого сайта для более подробного изучения некоторых аспектов.
Что такое Arduino и для чего оно нужно?
Arduino — это электронный конструктор, который позволяет любому человеку создавать разнообразные электро-механические устройства. Ардуино состоит из программной и аппаратной части. Программная часть включает в себя среду разработки (программа для написания и отладки прошивок), множество готовых и удобных библиотек, упрощенный язык программирования. Аппаратная часть включает в себя большую линейку микроконтроллеров и готовых модулей для них. Благодаря этому, работать с Arduino очень просто!
Дешёвые модули умного дома с Aliexpress
С помощью ардуино можно обучаться программированию, электротехнике и механике. Но это не просто обучающий конструктор. На его основе вы сможете сделать действительно полезные устройства.
Начиная с простых мигалок, метеостанций, систем автоматизации и заканчивая системой умного дома, ЧПУ станками и беспилотными летательными аппаратами. Возможности не ограничиваются даже вашей фантазией, потому что есть огромное количество инструкций и идей для реализации.
Стартовый набор Arduino
Для того что бы начать изучать Arduino необходимо обзавестись самой платой микроконтроллера и дополнительными деталями. Лучше всего приобрести стартовый набор Ардуино, но можно и самостоятельно подобрать все необходимое. Я советую выбрать набор, потому что это проще и зачастую дешевле. Вот ссылки на лучшие наборы и на отдельные детали, которые обязательно пригодятся вам для изучения:
Базовый набор ардуино для начинающих: | Купить |
Большой набор для обучения и первых проектов: | Купить |
Набор дополнительных датчиков и модулей: | Купить |
Ардуино Уно самая базовая и удобная модель из линейки: | Купить |
Беспаечная макетная плата для удобного обучения и прототипирования: | Купить |
Набор проводов с удобными коннекторами: | Купить |
Комплект светодиодов: | Купить |
Комплект резисторов: | Купить |
Кнопки: | Купить |
Потенциометры: | Купить |
Полный Arduino RFID KIT с Aliexpress Обзор набора
Среда разработки Arduino IDE
Для написания, отладки и загрузки прошивок необходимо скачать и установить Arduino IDE. Это очень простая и удобная программа. На моем сайте я уже описывал процесс загрузки, установки и настройки среды разработки. Поэтому здесь я просто оставлю ссылки на последнюю версию программы и на статью с подробной инструкцией.
Язык программирования Ардуино
Когда у вас есть на руках плата микроконтроллера и на компьютере установлена среда разработки, вы можете приступать к написанию своих первых скетчей (прошивок). Для этого необходимо ознакомиться с языком программирования.
Для программирования Arduino используется упрощенная версия языка C++ с предопределенными функциями. Как и в других Cи-подобных языках программирования есть ряд правил написания кода. Вот самые базовые из них:
- После каждой инструкции необходимо ставить знак точки с запятой (;)
- Перед объявлением функции необходимо указать тип данных, возвращаемый функцией или void если функция не возвращает значение.
- Так же необходимо указывать тип данных перед объявлением переменной.
- Комментарии обозначаются: // Строчный и /* блочный */
Подробнее о типах данных, функциях, переменных, операторах и языковых конструкциях вы можете узнать на странице по программированию Arduino. Вам не нужно заучивать и запоминать всю эту информацию. Вы всегда можете зайти в справочник и посмотреть синтаксис той или иной функции.
Все прошивки для Arduino должны содержать минимум 2 функции. Это setup() и loop().
Функция setup
Функция setup() выполняется в самом начале и только 1 раз сразу после включения или перезагрузки вашего устройства. Обычно в этой функции декларируют режимы пинов, открывают необходимые протоколы связи, устанавливают соединения с дополнительными модулями и настраивают подключенные библиотеки. Если для вашей прошивки ничего подобного делать не нужно, то функция все равно должна быть объявлена. Вот стандартный пример функции setup():
void setup() < Serial.begin(9600); // Открываем serial соединение pinMode(9, INPUT); // Назначаем 9 пин входом pinMode(13, OUTPUT); // Назначаем 13 пин выходом >
В этом примере просто открывается последовательный порт для связи с компьютером и пины 9 и 13 назначаются входом и выходом. Ничего сложного. Но если вам что-либо не понятно, вы всегда можете задать вопрос в комментариях ниже.
Функция loop
Функция loop() выполняется после функции setup(). Loop в переводе с английского значит «петля». Это говорит о том что функция зациклена, то есть будет выполняться снова и снова. Например микроконтроллер ATmega328, который установлен в большинстве плат Arduino, будет выполнять функцию loop около 10 000 раз в секунду (если не используются задержки и сложные вычисления). Благодаря этому у нас есть большие возможности.
Макетная плата Breadbord
Вы можете создавать простые и сложные устройства. Для удобства я советую приобрести макетную плату (Breadbord) и соединительные провода. С их помощью вам не придется паять и перепаивать провода, модули, кнопки и датчики для разных проектов и отладки. С беспаечной макетной платой разработка становится более простой, удобной и быстрой. Как работать с макетной платой я рассказывал в этом уроке. Вот список беспаечных макетных плат:
Макетная плата на 800 точек с 2 шинами питания, платой подачи питания и проводами: | Купить |
Большая макетная плата на 1600 точек с 4 шинами питания: | Купить |
Макетная плата на 800 точек с 2 шинами питания: | Купить |
Макетная плата на 400 точек с 2 шинами питания: | Купить |
Макетная плата на 170 точек: | Купить |
Соединительные провода 120 штук: | Купить |
Первый проект на Arduino
Давайте соберем первое устройство на базе Ардуино. Мы просто подключим тактовую кнопку и светодиод к ардуинке. Схема проекта выглядит так:
Обратите внимание на дополнительные резисторы в схеме. Один из них ограничивает ток для светодиода, а второй притягивает контакт кнопки к земле. Как это работает и зачем это нужно я объяснял в этом уроке.
Для того что бы все работало, нам надо написать скетч. Давайте сделаем так, что бы светодиод загорался после нажатия на кнопку, а после следующего нажатия гас. Вот наш первый скетч:
// переменные с пинами подключенных устройств int switchPin = 8; int ledPin = 11; // переменные для хранения состояния кнопки и светодиода boolean lastButton = LOW; boolean currentButton = LOW; boolean ledOn = false; void setup() < pinMode(switchPin, INPUT); pinMode(ledPin, OUTPUT); >// функция для подавления дребезга boolean debounse(boolean last) < boolean current = digitalRead(switchPin); if(last != current) < delay(5); current = digitalRead(switchPin); >return current; > void loop() < currentButton = debounse(lastButton); if(lastButton == LOW currentButton == HIGH) < ledOn = !ledOn; >lastButton = currentButton; digitalWrite(ledPin, ledOn); >
В этом скетче я создал дополнительную функцию debounse для подавления дребезга контактов. О дребезге контактов есть целый урок на моем сайте. Обязательно ознакомьтесь с этим материалом.
ШИМ Arduino
Широтно-импульсная модуляция (ШИМ) — это процесс управления напряжением за счет скважности сигнала. То есть используя ШИМ мы можем плавно управлять нагрузкой. Например можно плавно изменять яркость светодиода, но это изменение яркости получается не за счет уменьшения напряжения, а за счет увеличения интервалов низкого сигнала. Принцип действия ШИМ показан на этой схеме:
Когда мы подаем ШИМ на светодиод, то он начинает быстро зажигаться и гаснуть. Человеческий глаз не способен увидеть это, так как частота слишком высока. Но при съемке на видео вы скорее всего увидите моменты когда светодиод не горит. Это случится при условии что частота кадров камеры не будет кратна частоте ШИМ.
В Arduino есть встроенный широтно-импульсный модулятор. Использовать ШИМ можно только на тех пинах, которые поддерживаются микроконтроллером. Например Arduino Uno и Nano имеют по 6 ШИМ выводов: это пины D3, D5, D6, D9, D10 и D11. В других платах пины могут отличаться. Вы можете найти описание интересующей вас платы в этом разделе.
Для использования ШИМ в Arduino есть функция analogWrite(). Она принимает в качестве аргументов номер пина и значение ШИМ от 0 до 255. 0 — это 0% заполнения высоким сигналом, а 255 это 100%. Давайте для примера напишем простой скетч. Сделаем так, что бы светодиод плавно загорался, ждал одну секунду и так же плавно угасал и так до бесконечности. Вот пример использования этой функции:
// Светодиод подключен к 11 пину int ledPin = 11; void setup() < pinMode(ledPin, OUTPUT); >void loop() < for (int i = 0; i < 255; i++) < analogWrite(ledPin, i); delay(5); >delay(1000); for (int i = 255; i > 0; i—) < analogWrite(ledPin, i); delay(5); >>
Аналоговые входы Arduino
Как мы уже знаем, цифровые пины могут быть как входом так и выходом и принимать/отдавать только 2 значения: HIGH и LOW. Аналоговые пины могут только принимать сигнал.
И в отличии от цифровых входов аналоговые измеряют напряжение поступающего сигнала. В большинстве плат ардуино стоит 10 битный аналогово-цифровой преобразователь. Это значит что 0 считывается как 0 а 5 В считываются как значение 1023. То есть аналоговые входы измеряют, подаваемое на них напряжение, с точностью до 0,005 вольт. Благодаря этому мы можем подключать разнообразные датчики и резисторы (терморезисторы, фоторезисторы) и считывать аналоговый сигнал с них.
Для этих целей в Ардуино есть функция analogRead(). Для примера подключим фоторезистор к ардуино и напишем простейший скетч, в котором мы будем считывать показания и отправлять их в монитор порта. Вот так выглядит наше устройство:
В схеме присутствует стягивающий резистор на 10 КОм. Он нужен для того что бы избежать наводок и помех. Теперь посмотрим на скетч:
int sensePin = 0; // Пин к которому подключен фоторезистор void setup() < analogReferense(DEFAULT); // Задаем опорное значение напряжения. Эта строка не обязательна. Serial.begin(9600); // Открываем порт на скорости 9600 бод. >void loop() < Serial.println(analogRead(sensePin)); // Считываем значение и выводим в порт delay(500); // задержка для того что бы значений было не слишком много >
Вот так из двух простейших элементов и четырех строк кода мы сделали датчик освещенности. На базе этого устройства мы можем сделать умный светильник или ночник. Очень простое и полезное устройство.
Вот мы и рассмотрели основы работы с Arduino. Теперь вы можете сделать простейшие проекты. Что бы продолжить обучение и освоить все тонкости, я советую прочитать книги по ардуино и пройти бесплатный обучающий курс. После этого вы сможете делать самые сложные проекты, которые только сможете придумать.
19 комментариев
- Владимир 2019-01-29 16:31:50
Добрый день, господа!
Очень интересный сайт. Много полезной информации и подача материала спокойная.
Мне нравиться.
Вопрос у меня. Чую попал на грамотных спецов.
Приобрел я на Али китайскую чудо технику — лазерный гравировщик-выжигатель (2 Ватт.).
Плата управления Arduino Nano, драйвера на двигатели на красных платках.
Как водится описание слабое, информация. да все по-китайски. Начал разбираться.
Собрал, заработала машина, задымила. Поправил конфигурацию, на одной оси сделал инверсию.
Самое отвратительное — это ПО. Только зайчиков выжигать. Решил сменить.
Залил GRBL v1.1, программу взял LaserGRBL (версия из последних).
Программа увидела девайс, подключилась на СОМ, ожила, тут бы обрадоваться, да нет.
G-код готовится правильно, но команды включения М3 и выключения М5 лазера, которые прописаны в коде, не выполняются.
Лазер включается при включении девайса, и находится включенным все время, даже в остановленном состоянии (G-код еще не запущен, передвижения нет). При быстром передвижении лазера по рисунку он не выключается и все время жгет, рисуя за собой прожженную черту.
Подскажите, пожалуйста, как заставить лазер отключаться согласно G-коду? Как заставить девайс выполнять команды G-кода М3 и М5? Пробовал в конфигурации ставить и $32=1, и $32=0 — никак не реагирует. Жгет без остановки. Перепрошивал v1.1 — бесполезно.
Мне уже 65 отроду. Некогда досконально изучать Arduino. Говорят, что не поступают команды на лазер.
Да тут и ежику понятно. Как это можно исправить? В настройках галочку с ШИМ снял.
Подскажите, пожалуйста.
С уважением Владимир
- Евгений 2019-12-02 09:02:15
дело в том, что легче написать новую прошивку, чем разбираться в прошивке, а для этого надо понимать, как работает ваше устройство! т.е. надо работать вместе программист, и пользователь!
иначе никак!
илли 2 способ- изучите программирование, и пишите сами что вам надо!
поверьте- это не так сложно!
Источник: all-arduino.ru
10 интересных вещей, которые можно сделать на Arduino
Если у вас есть тяга к технологиям (или ребёнок с такой тягой), рассмотрите Arduino. Эта штука озадачит вас и ребёнка на много часов, а на выходе получатся удивительные проекты.
Что за Arduino
Arduino — это программируемый микроконтроллер. То есть это плата, на которую можно записать вашу программу, и эта плата сможет управлять другими штуками: например, зажечь лампочку, издать звук, включить электроприбор, измерить температуру, отправить СМС.
На самом базовом уровне Arduino просто отправляет и считывает электрические импульсы. Например, можно подключить к нему термометр, и Arduino сможет считать температуру в комнате. А потом, в зависимости от программы, отправить сигнал на устройство, которое включит вентилятор.
Или можно подключить к Arduino датчик углекислого газа. Arduino можно научить считывать показания датчика каждые пять минут и, когда уровень углекислого газа превышает норму, запищать, замигать лампочкой или с помощью серии моторчиков открыть окно.
К Arduino есть много плат расширения и датчиков. Сферы применения платы почти безграничны: автоматизация, системы безопасности, умный дом, музыка, робототехника и многое другое. Вот что можно делать на этой умной итальянской плате и на её российских и зарубежных клонах.
1. Робот-бармен с Bluetooth-управлением
Сложность: 4/5.
Время: 5/5.
Незаменимое устройство для любой вечеринки: работает от восьми батареек, готовит много коктейлей и управляется без проводов. В основе механического бармена — плата Arduino, приводы для позиционирования шейкера и подачи напитков, датчики положений.
Главная сложность при изготовлении — инженерная. Нужно точно прикрутить все детали и соединить их между собой, чтобы ёмкость оказывалась точно под нужными бутылками.
2. Светящийся куб на 512 светодиодов
Сложность: 3/5.
Время: 3/5.
Красивая штука, которая может светиться в такт музыке как трёхмерный эквалайзер и показывать 3D-анимацию. А ещё это может работать как необычный ночник.
Для сборки понадобится деревянное шасси с отверстиями, чтобы каждый ярус был таким же по размеру и форме, что и остальные. Число светодиодов в каждой грани выбрано не случайно: 8 ламп = 8-битная логика, самая простая в программировании и управлении через контроллер.
3. Взломщик кодовых замков
Сложность: 5/5.
Время: 4/5.
Этот проект разработал хакер Сэми Камкар, и мы приводим его только в демонстрационных целях. Для взлома, кроме платы Arduino, автор взял серво- и шаговый двигатели для перебора комбинаций и соединил всё на самодельном шасси из алюминия. В основе алгоритма — простой перебор всех комбинаций, но робот это делает быстрее человека.
4. Nod Bang — киваем головой и делаем бит
Сложность: 2/5.
Время: 3/5.
Идея в том, чтобы не просто кивать в такт музыке, а кивками самому генерировать звук. Эндрю Ли сделал специальное устройство, которое следит за положением головы и в момент наклона воспроизводит нужный звук.
В наушники он встроил акселерометр, кнопки отвечают за выбор звука, а Arduino — за воспроизведение звука на компьютере через MIDI-интерфейс. Чтобы всё выглядело эффектнее, у кнопок есть подсветка, и они тоже делают бит.
5. Поющее растение
Сложность: 2/5.
Время: 2/5.
По сути это терменвокс, который сделали в виде растения. Все остальные принципы работы остались теми же: звук возникает при движении рук, и разные движения генерируют разную мелодию.
Плата регистрирует изменение амплитуды сигнала, для чего автор использует самодельный сенсорный детектор для анализа прикосновений к цветку. Кроме этого понадобилась плата расширения Gameduino и сам цветок.
6. Замок, который открывается на секретный стук
Сложность: 3/5.
Время: 2/5.
Интересная вещь для тех, кто хочет поиграть в шпионов или пускать в комнату только своих друзей. Замок распознаёт стук по двери и сравнивает его с базовым звучанием, которое установил владелец. Если совпадает — приводы отодвигают замок и дверь открывается, если нет — ничего не происходит, можно постучать заново.
Чтобы установить новый стук на открытие, нужно зажать кнопку на ручке и постучать по двери новым способом. Пьезосенсор распознаёт вибрации и записывает их в память платы.
7. Горшок для цветов с автополивом
Сложность: 4/5.
Время: 3/5.
Полезный горшок для тех, кто забывает полить цветы перед отъездом или просто не знает, как часто надо их поливать. Вся электроника, насосы и ёмкость для воды находятся внутри горшка. Для каждого растения можно запрограммировать свой режим полива в каждом горшке.
Основные характеристики чудо-горшка:
- встроенный резервуар для воды;
- датчик контроля уровня влажности почвы;
- насос для подачи воды;
- датчик уровня воды в резервуаре;
- светодиод, информирующий о недостатке воды в резервуаре.
8. Драм-машина
Сложность: 1/5.
Время: 2/5.
Простая драм-машина на Arduino. Проект интересен тем, что это не обычный перебор записанных семплов, а настоящая генерация звука с помощью встроенного железа. Ещё здесь есть анализатор спектра звука: через видеовыход можно посмотреть на диаграммы и частотные характеристики.
Математическая основа этого устройства — разложение в ряд Фурье, которое решается подключением стандартной библиотеки.
9. Шагающий робот
Сложность: 2/5.
Время: 1/5.
Простой в изготовлении четырёхногий робот, который шагает и самостоятельно преодолевает препятствия в сантиметр высотой.
Чтобы его сделать, вам понадобятся сервомоторы для ног, немного проволоки и любой пластик, из которого делается шасси. Для питания — аккумулятор любой модели, который крепится на спине робота.
10. Робот-пылесос
Сложность: 4/5.
Время: 5/5.
Дмитрий Иванов из Сочи собрал настоящий робот-пылесос, который делает всё то же самое, что и промышленные устройства, только с возможностью тонкой настройки под себя и свою квартиру.
Основные детали — плата Arduino, 6 инфракрасных датчиков, турбина с двигателем и щётками и аккумулятор. Ещё у робота есть датчики столкновения, которые помогают объезжать препятствия, и контроллер аккумулятора, который следит за уровнем батарей и предупреждает о том, что пылесос надо зарядить.
Ваш первый язык программирования: гид для начинающих
Скачайте бесплатный гид от журнала «Код», чтобы ответить на все вопросы о старте в ИТ
Получите ИТ-профессию
В «Яндекс Практикуме» можно стать разработчиком, тестировщиком, аналитиком и менеджером цифровых продуктов. Первая часть обучения всегда бесплатная, чтобы попробовать и найти то, что вам по душе. Дальше — программы трудоустройства.
Источник: thecode.media
Всеволновое радио (LW, MW, SW, FM) на Arduino и модуле Si4730
По запросу “радио на Arduino” вы в сети интернет найдете, в основном, проекты радиоприемников на основе платы Arduino, которые работают в современном FM диапазоне (88-108 МГц в Европе). Тем не менее, для многих наверняка представляют интерес и диапазоны LW, MW и SW, которые занимают диапазон частот от 0,2 до 30 МГц. Особенно интерес диапазон коротких волн (SW) – радиоволны в этом диапазоне отражаются от ионосферы и, таким образом, могут распространяться на огромные расстояния, и даже огибать земной шар.
В данной статье мы рассмотрим создание на основе платы Arduino и модуля Si4730 радиоприемника с хорошими характеристиками, работающего в широком диапазоне длин волн (LW, MW, SW, FM).
Необходимые компоненты
- Плата Arduino Nano (купить на Aliexpress).
- ЖК дисплей 16х2 (купить на Aliexpress).
- Модуль Si4730 (купить на Aliexpress).
- Инкрементальный энкодер c кнопкой (Rotary Encoder) (купить на Aliexpress — не уверен в том, что в нем есть кнопка, но она точно есть в этом лоте — купить на Aliexpress № 2, но он продается, к сожалению, только по 5 штук).
- Модуль усилителя звуковой частоты (класс D), например, PAM8403 (купить на Aliexpress).
- Громкоговоритель (Speaker) 0,25 Вт, 8 Ом.
- Ползунковый переключатель.
- Ферритовый стержень от старого радиоприемника средних волн (MW).
- Резисторы и конденсаторы согласно схеме, представленной ниже.
Общие принципы работы радиоприемника
“Сердцем” нашего проекта является модуль Si4730 от компании Silicon Labs, который можно купить на Aliexpress в форме небольшой платы для разработки всего за несколько долларов (даташит на модуль Si4730) или в форме отдельной микросхемы (менее 100 рублей).
Данным модулем можно управлять с помощью платы Arduino по протоколу I2C с помощью библиотеки Si4735-I2C-R4 (ее можно скачать по ссылке, приведенной в разделе “исходный код программы” данной статьи), написанной Julio C. Rosa. Хотя производитель утверждает, что чип Si4730 работает только в диапазонах AM и FM, тем не менее, он может работать и в диапазоне коротких волн (SW) (хотя если верить последней версии даташита на данный модуль, он работает во всех диапазонах — LW, MW, SW, FM). Для усиления звуковой частоты с выхода модуля автор проекта (ссылка на оригинал приведена в конце статьи) использовал плату цифрового усилителя 2*3W PAM8403 Class D, которая отличается приемлемым функционалом и сравнительно дешево стоит (33 рубля на алиэкспрессе). Данный усилитель ранее уже был использован в проекте радиостанций на Arduino на нашем сайте.
Автор проекта собрал данный радиоприемник в компактном корпусе (см. фото и видео) и прикрепил к нему антенну для диапазона метровых волн. По его утверждению, качество приема рассмотренного проекта радиоприемника не уступает промышленным компактным моделям радиоприемников. К слову сказать, модуль Si4730 используют в своих устройствах такие известные производители компактных радиоприемников как TECSUN, DEGEN, SANGEAN и другие.
Схема проекта
Схема всеволнового радиоприемника на Arduino и модуле Si4730 представлена на следующем рисунке.
Данную схему также можно скачать в форме pdf файла (в более хорошем качестве).
К выходу модуля Si4730 не забудьте подключить усилитель звуковой частоты, например PAM8403, с выхода которого уже и подавайте сигнал на громкоговоритель.
Исходный код программы (скетча)
Библиотеку для работы с модулем Si4730 можно скачать по этой ссылке.
Источник: microkontroller.ru