Нужно признать, что полноценная функция MPPT в контроллерах до 2016 года была только в продукции EPsolar. Конечно с оговоркой, что мы не берём в расчёт дорогих европейских производителей, которые MPPT технологией овладели в полной мере уже тогда.
MPPT контроллер заряда SRNE SR-ML24** со снятой крышкой, закрывающей клеммы
В 2016 году на рынке появился второй производитель, громко заявивший о себе – SRNE. К большому удивлению продукция SRNE не только дублировала некоторые модельные ряды EpSolar, но и превосходила их по функционалу.
Наприме, очень популярная на тот момент эконом версия монополиста Tracer*A, выпущенная Epsolar под брендом EPEVER Tracer**10A и ориентированная на эконом сегмент, внезапно получила сильного конкурента – SRNE SR-ML24** .
✅ ТОП 4: Лучшие MPPT контроллеры заряда для солнечных батарей с Алиэкспресс [ 2022 Рейтинг ]
✅ ТОП 4: Лучшие MPPT контроллеры заряда для солнечных батарей с АлиЭкспресс [ 2022 Рейтинг ]
Серия SR-ML** выпускалась в том же номинале: 10, 20, 30 и 40 Ампер. Также имела дисплей на корпусе изделия и напряжение на входе до 100Вольт. Только помимо прочего в комплект поставки входи датчик тока, который у EPsolar/Epever стоил около $10 -15 и предполагался как дополнительная опция. Приятным сюрпризом стало вложение в коробку картонной разметки для крепления контроллера заряда к стене/щиту.
Это облегчало работу при монтаже, и стало приятным бонусом для инженеров. А в довершение к полному повторению функционал шла чудесная, до 20% ниже – цена!
SRNE дешевле чем EPsolar! В чём подвох?
Как и любой медали, в соревнованиях SRNE и EPsolar есть вторая сторона – минусы, недочёты или отличия, которым могут стать принципиальными в работе конкретной системы. И у SRNE они есть, что уж говорить:
ШИМ контроллер SRNE отличается компактными габаритами. Наверное потому, что не требует доп. охлаждения платы.
1. Увеличены габаритные размеры. SRNE больше по всем габаритам. Серия SR-ML** на 1-3 см отличается от EPEVER Tracer**10A по габаритам длины, ширины и высоты. И если для некоторых проектов это не значительно, то для рынка автодомов иногда становится принципиальным.
Примечание: Здесь нужно сделать оговорку, упомянув и тот факт, что и радиатор, к которому крепится плата SR-ML** значительно превосходит по площади и размерам своего предшественника. Разборка контроллера показала, что габарит мог бы быть и меньше. Возможно это «вклад№ производителя в улучшенную версию теплоотвода.
2. Максимальное напряжение на входе! Если сравнивать серии EPEVER Tracer**10A и SR-ML** по параметру максимального входного тока от солнечных батарей, то для обеих моделей в технических паспортах указаны 100 Вольт. Что дают нам эти 100Вольт?
Приведем пример: Вы устанавливаете на объект две солнечные панели 200Ватт, для которых в параметре напряжение холостого хода макс. стоит значение 44,8В. Это означает, что для поиска точки максимальной мощности вы должны соединить две панели последовательно, получив на вход контроллера 89,6Вольт. 89,6В меньше 100В, тогда в чём опасения?
А вот если внимательнее читать инструкцию, то вы найдёте пункт, где сказано, что при температуре выше 25°С это всего 90 Вольт. То есть 89,6 Вольт будут на грани возможностей контроллера. И если мы вспомним, что характеристики солнечной панели меняются в зависимости от освещенности и температуры, то поймём, что эту грань легко перешагнуть.
Печаль состоит в том, что данные параметры, как мы уже говорили, одинаковы как для контроллера заряда SR-ML**, так и для его предшественника EPEVER Tracer**10A. Вот только опыт эксплуатации обеих моделей показал, что EPsolar работу на пределе выдерживает, а SRNE – нет.
Примечание: Стоит отметить тот факт, что выход из ситуации, описанной в примере очень прост — панели необходимо соединить параллельно ( а не послеовательно). При этом напряжение на массиве будет не выше 44,8В, а функция MPPT будет работать без видимых изменений, так как напряжение на вход будет в пределах рекомендуемого.
3. ПО для работы контроллера. Его нельзя скачать на сайте производителя. Получить версию ПО можно у дистрибьютора (компании – продавца), у которого вы приобрели контроллер. Быть может это сделано специально, так как установка ПО без технической поддержки — задача трудная.
Источник: dzen.ru
Что такое MPPT-контроллер для заряда солнечных батарей
MPPT — это один из способов использования ресурсов источника энергии, будь то солнечная батарея или ветрогенератор, но в этой статье мы поговорим именно о солнечной энергии. Его основная особенность — повышение эффективности работы альтернативного источника, путём «вытягивания» максимального количества энергии за счет выбора определенного напряжения и тока.
Выбор этих параметров сводится к анализу вольт-амперной характеристики источника и определения при каком напряжении и потребляемом токе будет потребляться максимальная мощность. Именно так и расшифровывается аббревиатура MPPT – Maximum Power Point Tracking (слежение за точкой максимальной мощности).
Общие сведения о принципе действия MPPT-контроллеров
С первого взгляда на вопрос, можно подумать: «Ну так использовать максимально возможное напряжение, значит будет максимальный ток нагрузки (заряда АКБ)». Это логично, но в действительности это не так. В первую очередь это связано с вольт-амперной характеристикой солнечного элемента.
В рабочем (полезном) режиме солнечный элемент (горизонтальный участок ВАХ) – это источник тока, то есть его выходной ток слабо зависит от напряжения на его зажимах. Выходное напряжение (Uвыхсб) же зависит от сопротивления подключенной нагрузки. Это мы можем видеть на ВАХ.
В правой части, где напряжение максимально, вы видите напряжение холостого хода Uхх, которое ограничено количеством элементов в батарее и их внутренним устройством. Ток при этом стремится к 0. И наоборот, в левой части, где напряжение стремится к 0 – напряжение короткого замыкания Uкз, а ток ограничен мощностью элементов.
Если принять силу тока солнечной батареи на полезном участке за неизменную величину, то напряжение будет определяться сопротивлением нагрузки, если оно равно бесконечности, то мы наблюдаем режим холостого хода (при Rн=∞ ⇒ Uвыхсб=Uр.хх), соответственно при коротком замыкании сопротивление нагрузки будет стремиться к нулю, как и выходное напряжение (при Rн=∞ ⇒ Uвыхсб=Uкз). Максимальная же мощность наступит при определенном соотношении сопротивления нагрузки, напряжения и тока.
Что всё это значит? Переходим от батарей к контроллерам!
Контроллер — это промежуточное звено между солнечной батареей и аккумулятором, он регулирует ток заряда посредством ШИМ, например, или любого другого, который выбрал конструктор. Но просто подать напрямую напряжение с батареи – это не значит обеспечить максимальную передачу мощности от панелей к АКБ.
Для эффективного заряда контроллер следит за током, получаемым от батареи и её выходным напряжением, а также током, отдаваемым АКБ и напряжением на ней. Чтобы убедится в этом выберем 2 произвольных точки на ВАХ (приведем её здесь еще раз) и сравним мощность в них с обозначенной на рисунке точкой максимальной мощности (ТММ), в которой вроде бы ток не является максимальным…
Допустим у нас АКБ с номинальным напряжением в 12В, это значит, в заряженном состоянии на выводах мы получим около 14,2-14,5 В, а в разряженном около 11В, пусть в одном случае у нас 13В, а в другом – 12В. Такие напряжения и выберем с ВАХ, для примерного анализа мощности при прямом подключении «солнечная панель — аккумулятор».
Согласно ВАХ в обоих случаях батарея отдаст ток около 3.6А, мы получим следующую мощность, передаваемую в процессе заряда:
А в отмеченной на ВАХ точке максимальной мощности:
Результат очевиден – мощность в ТММ больше примерно на 25-35% в зависимости от заряженности АКБ. Но как заставить батарею отдавать ток при напряжении в 18.5В, вместо того которое присутствует на клеммах аккумуляторной батареи?
Всё просто и сложно одновременно — поиск точки максимальной мощности
Как было отмечено ранее, контроллер устанавливается между солнечными панелями (батареей) и аккумуляторами, получается, что он служит нагрузкой панелей, а АКБ нагрузкой контроллера, он же — это источник вторичного питания. Любой источник питания, да и любой прибор в электротехнике может быть представлен в виде сопротивления. Это называется «эквивалентным» или «приведенным» сопротивлением (в зависимости от конкретного случая), которое определяется по тому же закону ома, то есть можно сказать, что входное сопротивление контроллера равно:
Rконтр= Uвходное/Iвх. потр.
Напряжение точки максимальной мощности у солнечных панелей зависит от ряда факторов:
- Освещенности;
- Температуры (зависимость ВАХ и положения ТММ от температуры приведена на рисунке ниже);
- Возраста элементов и пр.
Поэтому задать его фиксированным и универсальным не получится, плюс оно изменяется в соответствии с сопротивлением нагрузки и потребляемым током (выше приведена идеализированная ВАХ, на практике всё же будет некоторый наклон на рабочем участке).
Есть множество методов нахождения этой «волшебной», в одном из вариантов реализации MPPT-контроллер сканирует ВАХ солнечных элементов определяя оптимальные параметры для текущих рабочих условий, например, изменяя входной ток, соответственно изменяется его входное сопротивление. С помощью датчиков тока и напряжения система управления вычисляет значение мощности и сравнивает его с предыдущим, до тех пор, пока она не достигнет максимального значения. Это называется «методом возмущения и наблюдения».
В зависимости от конкретного метода определения ТММ и внутреннего устройства контроллера, в т.ч. его прошивки, поиск ТММ происходит с определенной периодичностью. Однако на практике большинство методов являются схожими и основаны на принципе «отклониться и наблюдать». В некоторых моделях есть возможность настройки этого периода в диапазоне от 1 раза в несколько минут, до 1 раза в несколько часов. В зависимости от периодичности поиска определяется эффективность работы системы в целом.
Так как в результате изменения входных параметров мы получаем максимально возможную мощность от конкретных элементов, следующей задачей становится отдать её нагрузке, то есть использовать для заряда АКБ. В конечном итоге всё сводится к управлению электронным силовым преобразователем, допустим мы получили ток ТММ в 5А при напряжении в 17.5В, это:
Значит есть возможность отдать аккумулятору с напряжением на клеммах в 12В такой ток:
В большинстве случаев преобразование осуществляется с помощью понижающего (buck) или понижающе-повышающего преобразователя (buck-boost). Типовые структуры преобразователей мы рассматривали в статье ранее.
Тогда как при использовании ON/OFF или ШИМ-контроллеров входной и выходной ток были бы равны. Что приводит к менее эффективному распоряжению доступной мощностью, например, так как входной ток был 5А, то при таком выходном токе мощность, затрачиваемая на заряд аккумуляторов, была бы равна:
Это еще раз иллюстрирует приведенные при обсуждении вольт-амперной характеристики выше расчеты.
Однако, не стоит считать MPPT-технологию панацеей для солнечной энергетике. Разница в эффективности заряда АКБ с помощью MPPT и PWM-контроллера тем меньше, чем больше заряжен аккумулятор. Когда напряжение на его клеммах (Uакб) повышается, а разница между Uтмм понижается, то используется большая мощность солнечной панели.
Аналогично приведенному выше примеру предположим, что напряжение на АКБ не 12, а 13.5В, при условии, что солнечная панель работает с теми же параметрами, это будет выглядеть следующим образом:
Если при 12В использовалось 68% от максимальной мощности, то при 13.5В используется уже 77%. Также учтите и то, что ваши аккумуляторы не будут постоянно заряжаться, и на них не будет поступать ток одной и той же силы постоянно. Поэтому в МРРТ-контроллерах обычно реализуется несколько стадий заряда, например: MPPT (с максимальной мощностью) — выравнивающий — быстрый (форсированный) — поддерживающий. Кроме всего прочего стоит помнить, что ток солнечной батареи не должен превышать номинальный ток контроллера, иначе не реализуется максимальное использование мощности.
Но это всё не говорит нам о том, что MPPT-контроллеры не нужно использовать, а только о том, что не стоит переоценивать их пользу.
Фактом остаётся лишь то, что в нижнем ценовом сегменте устройства с технологией MPPT дороже чем PWM, но не всегда. Например, есть MPPT-контроллер «EPSolar MPPT TRACER-2210A», стоимость которого находится в пределах 180 долларов, и аналогичный по стоимости (180-200 долларов) PWM-контроллер с выходным током 20А «STECA PR2020».
При этом же есть другой PWM-прибор с тем же выходным током — «SRNE SR-HP2420» стоимостью немногим больше 20 долларов, в то время, как MPPT от этого же производителя «SRNE SR-ML2420» с таким же выходным током стоит уже 85 долларов.
Цены на некоторые модели контроллеров мы рассмотрим ниже.
Обзор современного рынка MPPT-контроллеров
В таблице не приводился полный перечень функций и защит, так как он занимает большой объём. Для сведения типовой набор функций выглядит примерно так:
- от неправильной полярности подключения СП и АКБ;
- от КЗ на входе солнечной панели;
- от КЗ в нагрузке;
- от перегрева;
- отключение солнечной панели после достижения окончания заряда АКБ;
- отключение нагрузки при слишком низком напряжении на АКБ;
- от обрыва в цепи АКБ;
- предотвращение разряда АКБ через солнечную панель в ночное время;
- контроль потребление тока нагрузкой.
Таблица отражает то, что стоимость MPPT-контроллера зависит не только от его максимальной силы тока (мощности), но и от диапазона выходных напряжений, списка поддерживаемых аккумуляторов, возможности подключения средств отображения, индикации и мониторинга, и ряда других факторов. Выбор контроллера сложен и очень индивидуален, поэтому приводить какие-то сравнения и рейтинги по меньшей мере бессмысленно.
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Автономное электроснабжение, Электрообзоры
Поделитесь этой статьей с друзьями:
Источник: electrik.info
MPT-7210A MPPT контроллер заряда для солнечной установки
Здравствуйте. Продолжаю тему солнечной энергетики. Солнечные панели я уже обозревал. Также писал обзор и на простейший PWM контроллер заряда. Настала очередь познакомиться с более «продвинутым» контроллером, так называемым MPPT контроллером.
Что это, для чего, чем лучше PWM, а также распаковка, разборка, тестирование, всё это будет в обзоре.
Заинтересовавшихся прошу.
Теория:
Сначала немного о том для чего нужен контроллер заряда. И действительно, достаточно просто соединить солнечную панель с аккумулятором, и при наличии хоть какого-то света, а еще лучше — солнечного, от солнечной батареи пойдет зарядный ток в аккумулятор и без использования контроллера.
Итак, что будет, если не применять его совсем? При прямом подключении солнечной панели к аккумулятору пойдет зарядный ток и напряжение на клеммах аккумулятора начнет постепенно расти. Пока оно не достигнет предельного напряжения зарядки (которое зависит от типа аккумулятора и его температуры), прямое подключение будет равнозначно присутствию контроллера моделей PWM или ON/OFF, поскольку в этом режиме эти модели просто соединяют вход и выход.
При достижении предельного напряжения (около 14 Вольт), ON/OFF контроллер, который является самым дешевым из всех типов, просто отключит солнечную батарею от аккумулятора и заряд прекратится, хотя в реальности аккумулятор заряжен еще не полностью и для полной зарядки требует поддержания на нем предельного напряжения в течение еще нескольких часов. Эту задачу решает PWM контроллер, который при помощи широтно-импульсного преобразования (ШИМ или, по английски — PWM) понижает напряжение солнечной батареи до нужного значения и поддерживает его.
Если же не использовать никакого контроллера, то необходимо постоянно следить при помощи вольтметра за зарядным напряжением и в нужный момент отключить солнечную панель. Но если забыть ее отключить, то это приведет к перезаряду, выкипанию электролита и сокращению срока службы аккумуляторов. Однако, если отключить ее не вовремя, как при использовании простого ON/OFF контроллера, аккумуляторы останутся заряженными не полностью (примерно на 90%), а регулярный недозаряд в конечном итоге приведет к значительному сокращению их срока службы.
Тут я думаю с необходимостью контроллера заряда можно закончить и перейти к описанию типов контроллеров заряда. Хотя про 2 типа (ON/OFF и PWM) уже было сказано выше. В общем существует третий тип контроллеров, так называемые MPPT контроллеры заряда. Для чего они нужны продемонстрирую на следующем графике:
На этом графике приводится нагрузочная характеристика стандартной 12 вольтовой солнечной панели с напряжением холостого хода около 20 вольт. Если подключить эту панель к 12 вольтовой свинцово-кислотной аккумуляторной батарее через PWM контроллер, можно получить рабочие точки в диапазоне 10-14,5В.
Однако точка максимальной мощности солнечной панели находится выше (на этом графике это 17 вольт). И если снимать с панели эту мощность именно в этой точке, КПД всей солнечной установки будет выше. Вот для этого и применяются MPPT контроллеры. MPPT это Maximum Power Point Tracking, т.е. отслеживание точки максимальной мощности.
Само отслеживание этой точки может осуществляться по разным алгоритмам и в разных MPPT контроллерах оно реализовано по разному. В самом простейшем случае эту точку можно задавать вручную.
Таким образом, главное отличие MPPT контроллера от PWM это наличие у первого преобразователя напряжения, из-за которого напряжение на солнечной панели не будет равно напряжению на аккумуляторной батарее.
Ну вот, надеюсь не сильно заумно написал.
MPPT контроллеры штука не из дешевых. Их стоимость начинается от 300 долларов. Описываемый же контроллер стоит существенно дешевле. Посмотрим чем он хорош или плох, как получится…
Упаковка и комплектация:
Контроллер был упакован в обычную картонную коробку, дополнительно обмотан «пупыркой». В комплекте кроме контроллера был еще лист А4 с описанием меню. Больше ничего. Т.е. никаких параметров, характеристик, руководств, ни-че-го. Фотографировать коробку, упаковку и горе-инструкцию я не стал, но на видео в конце обзора это всё есть.
Контроллер:
Инструкция по эксплуатации в электронном виде была найдена тут. Вот параметры контроллера, взятые из этой инструкции:
— Входное напряжение (от солнечной панели) 12-60 В;
— Выходное напряжение 15-90 В;
— Выходной ток 0-10А;
— Максимальная выходная мощность 600 Вт.
Габаритные размеры и вес:
Небольшое описание словами: На передней панели расположен цветной дисплей и 4 кнопки:
SET — выбор поля;
Стрелки вверх/вниз — увеличение/уменьшение величины в выбранном поле;
OK — подтверждение выбора или включение/выключение работы контроллера.
На левой стороне расположен вентилятор, на правой клеммы подключения солнечной панели и аккумулятора.
Подключение:
Очерёдность подключения следующая: сначала солнечную панель, затем аккумуляторную батарею. В большинстве контроллеров заряда делать нужно наоборот, т.е. сначала батарею, потом панель, т.к. контроллер питается от батареи. Здесь же контроллер питается от солнечной панели. Вот такая особенность.
Идем дальше, рассмотрим экран:
Экран разбит на 4 области: 3 горизонтальных и одну вертикальную. Перечисляю поля сверху вниз:
1. Напряжение на солнечной панели;
2. Напряжение на аккумуляторной батарее;
3. Ток заряда;
4. Мощность заряда;
5. Суммированная энергия заряда;
6. Время заряда
С помощью кнопок можно задать: напряжение точки максимальной мощности, максимальное напряжение аккумуляторной батареи, максимальный ток заряда, время свечения экрана, ёмкость аккумуляторной батареи, время зарядки аккумуляторной батареи, яркость экрана, скорость работы вентилятора. Как это делать, описано в инструкции, а также я это продемонстрировал в видеоролике в конце обзора. Все эти настройки можно записать в 1 из 20 ячеек памяти.
Разборка:
Чтобы разобрать корпус, необходимо открутить с одной из сторон 4 винта, лучше это делать со стороны вентилятора. И далее вытащить и плату и переднюю панель.
К качеству сборки и пайки претензий нет, всё аккуратно и чисто. Есть претензии к компоновке. Я не понимаю, зачем применять алюминиевый корпус, если не использовать его в качестве радиатора, а ставить внутрь маленький радиатор и обдувать его вентилятором. Мне кажется это верхом конструкторской глупости. В общем рекомендую транзисторы снять с радиатора и посадить на корпус.
Вентилятор демонтировать. Тем более, что он ужасно шумный и потребляет лишнюю энергию.
Тестирование:
Сначала я планировал к этому контроллеру подключить мою 20-ти ваттную солнечную панель и автомобильный аккумулятор. Т.е. заменить свой PWM контроллер на этот и рассказать какой это классный контроллер и насколько он лучше контроллера PWM. Но не тут-то было.
Сделав так я пришёл к выводу, что контроллер неработоспособен, т.к. ток и напряжение на аккумулятор не ограничивается и вся энергия из солнечной панели прямиком «шуруется» в аккумулятор. Чтобы изучить работу контроллера я подключил вместо солнечной панели блок питания с напряжением холостого хода около 16 вольт, а к клеммам подключения аккумуляторной батареи подключил 0,5 Вт нагрузочный резистор 2 кОм. Параллельно блоку питания и резистору подключил по мультиметру.
Сразу скажу, контроллер с приемлемой точностью измеряет напряжения на солнечной панели и на аккумуляторной батарее.
Далее, в меню контроллера, я выставил напряжение солнечной панели 10 вольт, напряжение на аккумуляторе 11,15 вольта. При включении, увидел что на входе, что на выходе напряжение около 15 вольт.
Что и требовалось доказать, контроллер работает некорректно.
Однако я пошёл дальше и задал 14В на входе и 20В на выходе, получил 16В и 20В соответственно.
Уже лучше.
Следующая точка тестирования: 14В и 40В. Получил: 15,5В и 40В.
Идём дальше. Задал 13 вольт на входе, и 90В на выходе. Получил 13В и 76В соответственно.
Вот это нормальный режим работы MPPT контроллера. Т.е. контроллер поддерживает на входе напряжение заданное ранее как «напряжение максимальной мощности панели». На выходе контроллер работает в режиме контролирования тока заряда. Просто входной мощности недостаточно, чтобы поднять напряжение до максимальнодопустимого, также выставленного ранее. Как только напряжение на аккумуляторной батарее достигнет максимального, контроллер перейдёт в режим поддержания напряжения и не даст подняться ему выше.
Видеообзор:
В видеообзоре распаковка, разборка и тестирование прибора. Также я подробно показал как работать с меню.
Итог:
В результате всего вышесказанного могу ответственно заявить, что данный контроллер работоспособен и является MPPT контроллером с несколькими оговорками:
1. Контроллер не способен автоматически находить точку максимальной мощности солнечной панели, напряжение этой точки необходимо задавать вручную (конструктивная особенность);
2. Контроллер может быть применим при условии, что напряжение на аккумуляторной батарее выше напряжения холостого хода солнечной панели, иначе ограничений по напряжению и току заряда нет (конструктивная особенность);
3. Контроллер при включении автоматически не считывает из памяти все параметры, поэтому ежедневно требует ручной начальной инициализации (программная недоработка, можно выйти из ситуации применив дополнительный контроллер, например, Ардуино, для начальной инициализации сабжа).
Также к «минусам» можно отнести шумность вентилятора и странную конструктивную особенность прибора: алюминиевый корпус не используется в качестве радиатора. Но здесь достаточно просто произвести необходимые доработки, убрав внутренний маленький радиатор и вентилятор, «посадить» силовые транзисторы на корпус.
Ну вот как-то так получилось. На первый взгляд «минусов» больше, чем «плюсов». Так это или нет не знаю.
При написании данной статьи я перерыл некоторое количество информации по поводу имеющихся в наличии MPPT контроллеров и суммируя могу заявить, что далеко не все продаваемые недорогие MPPT контроллеры являются таковыми. Т.е. производители часто пишут эту аббревиатуру, обманывая покупателей. Это утверждение не относится к сабжу.
Повторю, что обозреваемый контроллер это MPPT контроллер, хоть и самого начального уровня.
Надеюсь информация найдёт своего читателя и будет ему полезна. Удачи!
Источник: www.taker.im