Датчик уровня воды с Алиэкспресс как работает

Всем привет!
В одном из моих старых видео от марта 2018г я продемонстрировал работу емкостного, бесконтактного датчика уровня жидкости XKC-Y25. Ссылка на видео. Примерная стоимость этого датчика с доставкой с Алиэкспресс составляет плюс-минус 300р.

Но на том же Алиэкспресс можно купить его альтернативу всего за 7 руб. А для тех кто не хочет ждать посылку 2 месяца можно приобрести такой сенсор в России за 30 руб.

И да Вы наверно очень удивлены, что я использую в качестве датчика воды обыкновенную емкостную кнопку TTP223. Ее принцип работы тот же самый как и у датчика воды, измерение емкости, а так как тело человека это тоже достаточно большая емкость с жидкостью, то емкостная кнопка и датчик жидкости будут выполнять одни и те же функции.

Регулятор уровня воды с aliexpress

Удивляет, то что кнопка работает ничем не хуже датчика XKC-Y25. Я ее тестировал на протяжении нескольких дней и не обнаружил никаких недостатков.

По умолчанию кнопка настроена на максимальную чувствительность и реагирует абсолютно на все кроме тонкого пластика.

Для уменьшения чувствительности я припаял конденсатор 40pF, к сожалению меньшей емкости конденсатора у меня не было под рукой. Поэтому с таким конденсатором чувствительность датчика очень сильно уменьшилась. Я думаю оптимально использовать емкость 10pF.

Как видите нет никакой разницы, кнопка TTP223 работает так же как датчик XKC-Y25, а это значит что не стоит переплачивать за XKC-Y25.

Если у кого-то остались вопросы, пишите свои комментарии под статьей.

Чел 28 октября 2022 23:56

Источник: duino.ru

Как работает датчик уровня воды и его взаимодействие с Arduino

Если вы когда-нибудь взрывали водонагреватель или когда-либо пытались изготовить погружную электронику, то знаете, как важно определить, есть ли вокруг вода. С этим датчиком уровня воды сделать это очень просто!

Данный датчик можно использовать для измерения уровня воды, контроля за отстойником, обнаружения дождя или утечки.

Как работает датчик уровня воды и его взаимодействует с Arduino

Обзор аппаратного обеспечения

Данный датчик содержит ряд из десяти открытых медных дорожек, пять из которых являются питающими, а пять – чувствительными.

Эти дорожки чередуются так, что между каждыми двумя питающими дорожками есть одна чувствительная дорожка.

Бесконтактный датчик уровня жидкости XKC-Y25-NPN

Обычно эти дорожки не соединены между собой, но при погружении они соединяются водой.

Рисунок 1 Датчик уровня воды

На плате расположен индикатор питания, который загорается при подаче на плату напряжения питания.

Как работает датчик уровня воды?

Работа датчика уровня воды довольно проста.

Ряд открытых параллельных проводников вместе действует как переменный резистор (потенциометр), сопротивление которого изменяется в зависимости от уровня воды.

Изменение сопротивления соответствует расстоянию от верхушки датчика до поверхности воды.

Сопротивление обратно пропорционально высоте воды:

  • чем больше воды, в которую погружен датчик, тем лучше проводимость, и тем ниже сопротивление;
  • чем меньше воды, в которую погружен датчик, тем хуже проводимость, и тем выше сопротивление.

Датчик в соответствии с сопротивлением выдает выходное напряжение, измеряя которое мы можем определить уровень воды.

Распиновка датчика уровня воды

Данный датчик уровня воды очень прост в использовании и имеет только 3 контакта для подключения.

Рисунок 3 Распиновка датчика уровня воды

Вывод S (Signal) – это аналоговый выход, который будет подключен к одному из аналоговых входов вашей платы Arduino.

Вывод + (VCC) обеспечивает питание датчика. Датчик рекомендуется питать напряжением от 3,3 до 5 В. Обратите внимание, что напряжение на аналоговом выходе будет зависеть от того, какое напряжение питания подается на датчик.

Подключение датчика уровня воды с Arduino

Давайте подключим датчик уровня воды к Arduino.

Сначала вам нужно подать питание на датчик. Для этого вы можете подключить вывод +(VCC) на модуле к выводу 5V на Arduino, а вывод -(GND) модуля к выводу GND Arduino.

Однако одной из широко известных проблем с этими датчиками является их короткий срок службы при воздействии влажной среды. При постоянной подаче питания на зонд скорость коррозии значительно увеличивается.

Чтобы преодолеть эту проблему, мы рекомендуем не подавать питание на датчик постоянно, а включать его только тогда, когда вы снимаете показания.

Алиэкспресс летняя распродажа когда

Самый простой способ сделать это – подключить вывод VCC к цифровому выводу Arduino и устанавливать на нем высокий или низкий логический уровень, когда это необходимо. Итак, давайте подключим вывод VCC модуля к цифровому выводу 7 Arduino.

Наконец, подключите вывод S (Signal) к выводу A0 аналого-цифрового преобразователя Arduino.

Схема соединений показана на следующем рисунке.

Рисунок 4 Схема подключения датчика уровня воды к Arduino

Базовый пример определения уровня воды

После того, как схема будет собрана, загрузите в Arduino следующий скетч.

// Выводы, подключенные к датчику #define sensorPower 7 #define sensorPin A0 // Переменная для хранения значения уровня воды int val = 0; void setup() < // Настраиваем D7 на выход pinMode(sensorPower, OUTPUT); // Устанавливаем низкий уровень, чтобы на датчик не подавалось питание digitalWrite(sensorPower, LOW); Serial.begin(9600); >void loop() < // получить показания из функции ниже и напечатать его int level = readSensor(); Serial.print(«Water level: «); Serial.println(level); delay(1000); >// Данная функция используется для получения показаний int readSensor() < digitalWrite(sensorPower, HIGH); // Включить датчик delay(10); // Ждать 10 миллисекунд int val = analogRead(sensorPin); // Прочитать аналоговое значение от датчика digitalWrite(sensorPower, LOW); // Выключить датчик return val; // Вернуть текущее показание >

Как только скетч будет загружен, откройте окно монитора последовательного порта, чтобы увидеть вывод Arduino. Вы должны увидеть значение 0, когда датчик ничего не касается. Чтобы увидеть, как определяется вода, вы можете взять стакан воды и медленно погрузить в него датчик.

Рисунок 5 Вывод показаний датчика уровня воды

Датчик не рассчитан на полное погружение, поэтому соблюдайте осторожность при эксперименте, чтобы с водой соприкасались только открытые дорожки на печатной плате.

Объяснение

Скетч начинается с объявления выводов Arduino, к которым подключены выводы датчика + (VCC) и S (сигнал) .

#define sensorPower 7 #define sensorPin A0

Далее мы определяем переменную val , в которой хранится текущее значение уровня воды.

int val = 0;

Теперь в функции setup() мы сначала настраиваем вывод для питания датчика как выход, а затем устанавливаем на нем низкий логический уровень, чтобы изначально питание на датчик не подавалось. А также настраиваем последовательную связь с компьютером.

pinMode(sensorPower, OUTPUT); digitalWrite(sensorPower, LOW); Serial.begin(9600);

В функции loop() мы периодически вызываем функцию readSensor() с интервалом в одну секунду и выводим возвращаемое значение.

int level = readSensor(); Serial.print(«Water level: «); Serial.println(level); delay(1000);

Функция readSensor() используется для получения текущего уровня воды. Она включает датчик, ждет 10 миллисекунд, считывает аналоговое значение с датчика, выключает датчик и затем возвращает аналоговое значение.

int readSensor() < digitalWrite(sensorPower, HIGH); // Включить датчик delay(10); // Ждать 10 миллисекунд int val = analogRead(sensorPin); // Прочитать аналоговое значение от датчика digitalWrite(sensorPower, LOW); // Выключить датчик return val; // Вернуть текущее показание >

Калибровка

Чтобы получать от датчика уровня воды точные показания, рекомендуется сначала откалибровать его для конкретного типа воды, которую вы планируете контролировать.

Как вы знаете, чистая вода не проводит электрический ток. На самом деле, проводящей ее делают минералы и примеси. Таким образом, ваш датчик может быть более или менее чувствителен в зависимости от типа используемой воды.

Прежде чем вы начнете отслеживать данные или запускать обработчиков каких-либо событий, вы должны увидеть, какие показания вы на самом деле получаете от вашего датчика.

Используя приведенный выше скетч, отметьте на то, какие значения выдает ваш датчик, когда он полностью сухой, когда он частично погружен в воду, и когда он полностью погружен в воду.

Например, используя ту же схему, что и выше, вы увидите в мониторе последовательного порта значения, близкие к следующим:

Рисунок 6 Калибровка датчика уровня воды

  • когда датчик сухой: 0;
  • когда он частично погружен в воду: ~420;
  • когда он полностью погружен: ~520.

Этот тест может потребовать несколько проб и ошибок. Как только вы получите хороший контроль над этими показаниями, вы сможете использовать их в качестве пороговых значений, если намерены инициировать какое-либо действие. В следующем примере мы собираемся сделать именно это.

Проект определения уровня воды

Для нашего следующего примера мы собираемся создать портативный датчик уровня воды, который будет зажигать светодиоды в зависимости от уровня воды.

Схема соединений

Мы будем использовать схему из предыдущего примера. Но на этот раз нам нужно просто добавить несколько светодиодов.

Подключите три светодиода к цифровым выводам 2, 3 и 4 через токоограничивающие резисторы 220 Ом.

Соберите схему, как показано ниже:

Рисунок 7 Индикация уровня воды с помощью светодиодов

Код Arduino

После того, как схема будет собрана, загрузите в Arduino следующий скетч.

Aliexpress способы оплаты qiwi

В этом скетче объявлены две переменные, а именно lowerThreshold и upperThreshold . Эти переменные представляют наши пороговые уровни.

Всё, что ниже нижнего порога, включает красный светодиод. Всё, что выше верхнего порога, включает зеленый светодиод. Всё, что находится между ними, включает желтый светодиод.

/* Измените эти значения, основываясь на своих значениях калибровки */ int lowerThreshold = 420; int upperThreshold = 520; // Выводы, подключенные к датчику #define sensorPower 7 #define sensorPin A0 // Переменная для хранения значения уровня воды int val = 0; // Объявляем выводы, к которым подключены светодиоды int redLED = 2; int yellowLED = 3; int greenLED = 4; void setup() < Serial.begin(9600); pinMode(sensorPower, OUTPUT); digitalWrite(sensorPower, LOW); // Настроить выводы светодиодов на выход pinMode(redLED, OUTPUT); pinMode(yellowLED, OUTPUT); pinMode(greenLED, OUTPUT); // Изначально выключить все светодиоды digitalWrite(redLED, LOW); digitalWrite(yellowLED, LOW); digitalWrite(greenLED, LOW); >void loop() < int level = readSensor(); if (level == 0) < Serial.println(«Water Level: Empty»); digitalWrite(redLED, LOW); digitalWrite(yellowLED, LOW); digitalWrite(greenLED, LOW); >else if (level > 0 level else if (level > lowerThreshold level else if (level > upperThreshold) < Serial.println(«Water Level: High»); digitalWrite(redLED, LOW); digitalWrite(yellowLED, LOW); digitalWrite(greenLED, HIGH); >delay(1000); > // Данная функция используется для получения показаний int readSensor()

Теги

Сохранить или поделиться

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.

Источник: radioprog.ru

Датчик уровня жидкости: устройство, принцип действия, разновидности

Технологические процессы в современном мире требуют частых замеров объема топливных материалов, заполнения водой и другими жидкими веществами. Для осуществления контроля за наполнением любой емкости жидкостью в автоматическом режиме применяется датчик уровня жидкости. В данной статье мы рассмотрим основные виды и принцип разделения уровнемеров.

Устройство и принцип действия

На сегодняшний день существует огромное количество датчиков уровня жидкости, которые отличаются как конструкцией, так и способом выполнения замера. В виду чего рассмотрим устройство на примере наиболее простой поплавковой модели уровнемера. Конструктивно поплавковый датчик уровня жидкости состоит из следующих компонентов:

Устройство датчика уровня жидкости

  • поплавок 1 – предназначен для взаимодействия с поверхностью жидкости;
  • сильфон 2 – представляет собой чувствительный гофрированный элемент, способный сохранять свои свойства при многократных механических деформациях;
  • фланец 3 – используется для соединения с монтажной поверхностью, позволяет увеличить плотность крепления
  • микропереключатель 4 – срабатывает от перемещения поплавка в геометрической плоскости, для предотвращения взаимодействия с влагой помещается в герметичный корпус.
  • прокладка 5 – используется для герметизации отверстия, предотвращает протекание жидкости из емкости.

Принцип действия такого датчика основывается на архимедовой силе любой жидкости.

Принцип действия датчика уровня жидкости

При помещении датчика в емкость с жидкостью происходит взаимодействие поплавка с поверхностью. За счет архимедовой силы поплавок выталкивается наружу и находится в том же положении, что и уровень.

При среднем положении жидкости 1 поплавок останется в нейтральном положении, сигнал от переключателя не поступает на пульт управления или панель сигнализации. В случае наполнения резервуара до позиции 2 поплавок поднимется выше и переведет микропереключатель в соответствующее положение. Если жидкость в резервуаре опустится ниже номинального уровня, поплавок переместится в нижнюю позицию 3 и переведет контакты микропереключателя. Каждый раз на выходе датчика будет появляться соответствующий сигнал о степени наполнения, однако принцип действия будет отличаться в зависимости от типа устройства.

Разновидности по типу

Существует широкий спектр критериев, по которым можно разделить датчики уровня. Начиная от принципа действия и, заканчивая, способом передачи сигнала. Однако все сенсоры условно можно подразделить на две большие группы – контактные и бесконтактные.

Контактные

Под контактным датчиком следует подразумевать такое устройство, которому для функционирования требуется физический контакт с измеряемой поверхностью. Как правило, такие датчики применяются в условиях воздействия факторов, которые существенно усложняют измерения – высокая температура или давление. Также их массово используют для работы с пенящимися жидкостями, где верхний слой может вносить ощутимую погрешность при измерениях другими методами. Все контактные приспособления можно разделить на такие виды по принципу действия:

  • Емкостные – состоят из двух пластин, погружаемых в жидкость. Измерения производятся по принципу конденсатора, у которого емкость будет изменяться в зависимости от высоты заполнения жидкостью пространства между обкладками конденсатора. Часто применяются для емкостей с небольшим объемом жидкости. Отличаются невысокой точностью замеров, но работают без подвижных частей, что существенно повышает их надежность.

Емкостной датчик

  • Гидростатические – основывается на законе Паскаля. Осуществляет измерение разности гидростатического давления в резервуаре, которое зависит исключительно от высоты столба жидкости. Обладают хорошей точностью, но могут применяться только в тех емкостях, где величина давления соизмерима с атмосферным. Они не подходят для жидкостей с переменной плотностью.
Магазины в Алиэкспресс фабричное качество

Гидростатический датчик

  • Байпасные – используют принцип сообщающихся сосудов, в таких датчиках информация об уровне измеряемой жидкости отображается наиболее наглядно. При изменении высоты столба в основном резервуаре датчик отобразит эти данные на собственном уровнемере. Однако такие модели не используются в условиях более +250°С и в средах, повышающих собственную вязкость со снижением температуры.
  • Магнитные – являются подвидом поплавковых датчиков, так как уровень жидкости измеряется поплавком, перемещающимся по герметично запаянной трубке. Внутри трубки располагается геркон, срабатывающий в случае приближения или удаления поплавка с магнитом.
  • Рефлексные микроволновые – принцип действия таких датчиков основывается на технологии рефлектометрии в зависимости от временного промежутка. Направленный волновой излучатель посылает сигнал, а сенсор воспринимает скорость возвращения импульса.

Рефлексный микроволновой датчик уровня жидкости

Основным недостатком этих моделей является необходимость погружения устройства по всей глубине, что не всегда удобно для больших резервуаров. Но, в отличии от других датчиков уровня жидкости, рефлексные модели не зависят от наличия или отсутствия пены, твердых частиц, плавающих в толще или на поверхности, диэлектрической проницаемости.

Бесконтактные

Бесконтактные датчики представляют собой такие устройства, которым для функционирования не требуется осуществлять физический контакт с измеряемой поверхностью. Такие устройства применяются в агрессивных жидких средах, где возможен быстрый износ элементов сенсора из-за влияния активных компонентов. Также их устанавливают в тягучие жидкости и среды с большой вязкостью. Все бесконтактные датчики условно подразделяют на такие категории:

Радарный микроволновой датчик

  • Ультразвуковые — являются одним из наиболее распространенных типов бесконтактных датчиков уровня жидкости. Принцип действия основывается на способности жидкости отражать ультразвуковой спектр излучения. Генератор ультразвука, неслышимого для человеческого уха, посылает сигнал от верхней точки к линии раздела сред. При столкновении с жидкостью сигнал отражается и возвращается к датчику, где он воспринимается сенсором. В зависимости от времени перемещения ультразвука делается заключение об уровне в резервуаре.
  • Радарные микроволновые – аналогичен предыдущему варианту, за исключением того, что в качестве объекта измерения выступает не ультразвук, а микроволны.

Существенным недостатком датчиков радарного типа является восприимчивость к газовым подушкам, которые могут скапливаться над поверхностью жидкости.

Радиоизотопный датчик

  • Радиоизотопные – используют гамма излучение для контроля уровня жидкости, частицы направляются в контролируемый резервуар.

В связи с опасностью воздействия на живые организмы является самым дорогим и наименее распространенным вариантом. При его использовании обязательно обеспечиваются дополнительные меры безопасности для обслуживающего персонала.

Разновидности по функционалу

Помимо отличий в отношении принципа взаимодействия с измеряемой средой и принципа действия датчики уровня жидкости могут отличаться и по способу передачи сигнала. Все устройства касательно принципа сигнализации об изменении положения уровня подразделяют на уровнемеры и сигнализаторы.

Уровнемеры.

Под уровнемерами подразумеваются такие приборы, которые осуществляют постоянный контроль за текущим положением верхней кромки измеряемой среды. В виду чего они постоянно передают сигнал о проведенных измерениях или выдают данные по шкале. В зависимости от способа отображения информации они бывают цифровыми и аналоговыми.

Сигнализаторы.

Сигнализаторы, в отличии от уровнемеров, не производят постоянный контроль уровня жидкости, а срабатывают исключительно при достижении определенного порогового значения. В таких устройствах жидкость, опускаясь или поднимаясь, перемещает чувствительный элемент. Который в определенной позиции производит срабатывание реле, переключателя или микроконтроллера.

Какой выбрать?

При выборе конкретной модели датчика уровня следует обратить внимание на следующие характеристики:

Однополюсные, двухполюсные, однопозиционные, двухпозиционные

  • Тип переключателя – различают твердотельные и электромеханические. Первый тип не имеет подвижных элементов и не подвержен изнашиванию. Второй, наоборот, оснащается подвижными контактами, чувствительными элементами и т.д.
  • Логика работы – различают датчики уровня с нормально разомкнутыми и нормально замкнутыми контактами. Тот или иной тип выбирается в зависимости от схемы включения и поставленных задач контроля уровня.
  • Количество полюсов и позиций – встречаются как однополюсные и двухполюсные датчики уровня, так и однопозиционные или двухпозиционные.
  • Диапазон измерений – определяет допустимые пределы уровня, которые может зафиксировать датчик.

Использованная литература

  • Хансуваров К. И., Цейтлин В. Г. «Техника измерения давления, расхода, количества и уровня жидкости, газа и пара» 1990
  • Дж. Фрайден «Современные датчики. Справочник» 2005
  • В. А. Ацюковский «Емкостные дифференциальные датчики перемещения» 1960
  • Г. Виглеб «Датчики. Устройство и применение.» 1989
  • В. И. Винокуров, С. И. Каплин, И. Г. Петелин. «Электрорадиоизмерения» 1986

Источник: www.asutpp.ru

Рейтинг
( Пока оценок нет )
Загрузка ...
Китай Покупай